Skip to main content

A Study on Urban Morphology and Outdoor Wind Environment of Riverside Historical Industrial Estate

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Design Imperatives: The Future is Now (CAAD Futures 2021)

Abstract

The urban morphology has important implications for urban wind environment. In urban planning and design, the optimization of wind environment by urban form controlling has been receiving increasing attention. Taking Shanghai Yangshupu Industrial Estate as a real case, the study analyzes urban morphology and ventilation effect, introducing wind environmental indicators: wind velocity ratio (Fv), factor of wind dispersion (Fd), factor of wind recession (Fr), ratio of wind comfort area (Fc) and morphological indicators: ratio of public space (Rp), ratio of public space distribution (Rpd), average frontal façade area (Rfa), average sky view factor (Rsvf). With three-dimensional modeling and CFD simulation, the result shows that these two series of indicators have significant correlation. The present findings are supposed to provide a strategy for optimizing urban morphology and wind environmental at pedestrian level in the early stage of urban design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohajerani, A., Bakaric, J., Jeffrey-Bailey, T.: The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 197, 522–538 (2017)

    Article  Google Scholar 

  2. Zakaria, N.H., Salleh, S.A., Asmat, A., et al.: Analysis of wind speed, humidity and temperature: variability and trend in 2017. Earth Environ. Sci. 489, 012–013 (2020)

    Google Scholar 

  3. Guo, F., Zhu, P., Wang, S., et al.: Improving natural ventilation performance in a high-density urban district: a building morphology method. Procedia Eng. 205, 952–958 (2017)

    Article  Google Scholar 

  4. Peng, Y., Gao, Z., Ding, W.: An approach on the correlation between urban morphological parameters and ventilation performance. Energy Procedia 142, 2884–2891 (2017)

    Article  Google Scholar 

  5. Peng, Y., Gao, Z., Buccolieri, R., et al.: An investigation of the quantitative correlation between urban morphology parameters and outdoor ventilation efficiency indices. Atmosphere 10, 33 (2019)

    Article  Google Scholar 

  6. Hang, J., Li, Y.: Ventilation strategy and air change rates in idealized high-rise compact urban areas. Build. Environ. 45, 2754–2767 (2012)

    Article  Google Scholar 

  7. Tsichritzis, L., Nikolopoulou, M.: The effect of building height and façade area ratio on pedestrian wind comfort of London. J. Wind Eng. Ind. Aerodyn. 191, 63–75 (2019)

    Article  Google Scholar 

  8. Abd Razak, A., Hagishima, A., Ikegaya, N., et al.: Analysis of airflow over building arrays for assessment of urban wind environment. Build. Environ. 59, 56–65 (2013)

    Article  Google Scholar 

  9. Kaseb, Z., Hafezi, M., Tahbaz, M., et al.: A framework for pedestrian-level wind conditions improvement in urban areas: CFD simulation and optimization. Build. Environ. 184, 107191 (2020)

    Article  Google Scholar 

  10. Ramponi, R., Bert, B., et al.: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ. 92, 152–166 (2015)

    Article  Google Scholar 

  11. Schatzmann, M., Leitl, B.: Issues with validation of urban flow and dispersion CFD models. J. Wind Eng. Ind. Aerodyn. 99, 169–186 (2011)

    Article  Google Scholar 

  12. Blocken, B., Stathopoulos, T., Carmeliet, J., et al.: Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. J. Build. Perform. Simul. 4, 157–184 (2011)

    Article  Google Scholar 

  13. Antoniou, N., Montazeri, H., Wigo, H., et al.: CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: evaluation using air delay. Build. Environ. 126, 355–372 (2017)

    Article  Google Scholar 

  14. van Druenen, T., van Hooff, T., Montazeri, H., et al.: CFD evaluation of building geometry modifications to reduce pedestrian-level wind speed. Build. Environ. 163, 106293 (2019)

    Article  Google Scholar 

  15. Antoniou, N., Montazeri, H., Neophytou, M., et al.: CFD simulation of urban microclimate: validation using high-resolution field measurements. Sci. Total Environ. 695, 133743 (2019)

    Article  Google Scholar 

  16. Hang, J., Sandberg, M., Li, Y.: Effect of urban morphology on wind condition in idealized city models. Atmos Environ. 43, 869–878 (2009)

    Article  Google Scholar 

  17. Blocken, B.: 50 years of computational wind engineering: past, present and future. J. Wind Eng. Ind. Aerodyn. 2014(129), 69–102 (2014)

    Article  Google Scholar 

  18. Pingzhi, F., Jun, S., Qiang, W., et al.: Numerical study on wind environment among tall buildings in Shanghai Lujiazui Zone. J. Build. Struct. 34(9), 104–111 (2013)

    Google Scholar 

  19. Hea, B.J., Dinga, L., Prasad, D.: Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 60, 102289 (2020)

    Article  Google Scholar 

  20. Du, Y., Mak, C.M.: Improving pedestrian level low wind velocity environment in high-density cities: A general framework and case study. Sustain. Cities Soc. 42, 314–324 (2018)

    Article  Google Scholar 

  21. Wang, J.W., Yang, H.J., Kim, J.J.: Wind speed estimation in urban areas based on the relationships between background wind speeds and morphological parameters. J. Wind Eng. Ind. Aerodyn. 205, 10424 (2020)

    Google Scholar 

  22. Chen, L., Hang, J., Sandberg, M., et al.: The influence of building packing densities on flow adjustment and city breathability in urban-like geometries. Procedia Eng. 198, 758–769 (2017)

    Article  Google Scholar 

  23. Tsang, C.W., Kwok, K.C.S., Hitchcock, P.A.: Wind tunnel study of pedestrian level wind environment around tall buildings Effects of building dimensions, separation and podium. Build. Environ. 49, 167–181 (2012)

    Article  Google Scholar 

  24. Ng, E.: Policies and technical guidelines for urban planning of high-density citieseair ventilation assessment (AVA) of Hong Kong. Build. Environ 44(7), 1478–1488 (2009)

    Article  Google Scholar 

  25. Britter, R.E., Hanna, S.R.: Flow and dispersion in urban areas. Ann. Rev. Fluid Mech. 35, 469–496 (2003)

    Article  MATH  Google Scholar 

  26. Stathopoulos, T., Wu, H., Bédard, C.: Wind environment around buildings: a knowledge-based approach. J. Wind Eng. Ind. Aerodyn. 41–44, 2377–2388 (1992)

    Article  Google Scholar 

  27. Du, Y., Mak, C.M., Kwok, K., et al.: New criteria for assessing low wind environment at pedestrian level in Hong Kong. Build. Environ. 123, 23–36 (2017)

    Article  Google Scholar 

  28. Netherlands Normalization Institute, (NEN 8100), Wind Comfort and Wind Danger in the Built Environment (In Dutch), Dutch standard (2006)

    Google Scholar 

  29. Celen Ayse Arkon & Ünver Özkol: Effect of urban geometry on pedestrian-level wind Velocity. Archit. Sci. Rev. 57(1), 4–19 (2014)

    Article  Google Scholar 

  30. Ng, E., Yuan, C., Chen, L., et al.: Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 101, 59–74 (2011)

    Article  Google Scholar 

  31. Oke, T.R.: Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J. Climatol 1, 237–254 (1981)

    Article  Google Scholar 

  32. Lin, P., Gou, Z., Lau, S., et al.: The impact of urban design descriptors on outdoor thermal environment: a literature review. Energies 10, 2151 (2017)

    Article  Google Scholar 

  33. Lyu, T., Buccolieri, R., Gao, Z.: A numerical study on the correlation between sky view factor and summer microclimate of local climate zones. Atmosphere 10, 438 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Wang, C., Li, G. (2022). A Study on Urban Morphology and Outdoor Wind Environment of Riverside Historical Industrial Estate. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1280-1_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1279-5

  • Online ISBN: 978-981-19-1280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics