Skip to main content

Measurement of Spatial Openness of Indoor Space Using 3D Isovists Methods and Fibonacci Lattices

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Design Imperatives: The Future is Now (CAAD Futures 2021)

Abstract

The measurement of spatial openness in three dimensions has gained much popularity for recent years because it is helpful both in architecture theory research and actual design practices. Traditional tools have been developed to solve related problems but they have various limitations. In this paper, based on the 3D isovists theory, we propose a new index called spatial openness degree index (SODI). First, the paper introduces a feasible discrete sampling and computing method for the index. Second, the index is applied in several simple spatial configurations and one actual architecture case to verify its effectiveness. The new index has good adaptability to complex spatial environment, and it proves closely related to architectural factors such as openings. The study has the potential to make contributions to the development of quantitative spatial assessment system and the establishment of rational design criteria in practical design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadalla, E.K., Oxley, D.: The perception of room size: The rectangularity illusion. Environ. Behav. 16, 394–405 (1984). https://doi.org/10.1177/0013916584163005

    Article  Google Scholar 

  2. Stamps, A.: Effects of Area, Height, Elongation, and Color on Perceived Spaciousness. Environ. Behav. 43, 252–273 (2011). https://doi.org/10.1177/0013916509354696

  3. Sanatani, R.P.: An Empirical Inquiry into the Perceptual Qualities of Spatial Enclosures in Head Mounted Display Driven VR Systems Quantifying the ‘Intangibles’ of Space. In: Blucher Design Proceedings, pp. 125–132. Editora Blucher, São Paulo (2019). https://doi.org/10.5151/proceedings-ecaadesigradi2019_427

  4. Benedikt, M.L.: To take hold of space: isovists and isovist fields. Environ. Plan. B Plan. Des. 6, 47–65 (1979). https://doi.org/10.1068/b060047

  5. Fisher-Gewirtzman, D., Wagner, I.A.: Spatial openness as a practical metric for evaluating built-up environments. Environ. Plan. B Plan. Des. 30, 37–49 (2003). https://doi.org/10.1068/b12861

    Article  Google Scholar 

  6. Wu, X., Oldfield, P., Heath, T.: Spatial openness and student activities in an atrium: A parametric evaluation of a social informal learning environment. Build. Environ. 182, 107141 (2020). https://doi.org/10.1016/j.buildenv.2020.107141

    Article  Google Scholar 

  7. Ashihara, Y.: The aesthetic townscape. The MIT Press, Cambridge (1983)

    Google Scholar 

  8. Davis, L.S., Benedikt, M.L.: Computational models of space: Isovists and isovist fields. Comput. Graph. image Process. 11, 49–72 (1979). https://doi.org/10.1016/0146-664X(79)90076-5

  9. Benedikt, M., Burnham, C.A.: Perceiving Architectural Space: From Optic Arrays to Isovists. In: Persistence and change: Proceedings of the first international conference on event perception, pp. 103–115. Psychology Press (1985). https://doi.org/10.4324/9780203781449

  10. Turner, A., Doxa, M., O’Sullivan, D., Penn, A.: From Isovists to Visibility Graphs: A Methodology for the Analysis of Architectural Space. Environ. Plan. B Plan. Des. 28, 103–121 (2001). https://doi.org/10.1068/b2684

  11. Turner, A., Penn, A.: Making isovists syntactic: isovist integration analysis. In: 2nd International Symposium on Space Syntax, Brasilia, pp. 103–121. BRASILIA (1999)

    Google Scholar 

  12. Penn, A., Turner, A.: Space syntax based agent simulation. In: 1st International Conference on Pedestrian and Evacuation Dynamics, pp. 99–114. Springer-Verlag, Duisburg (2002)

    Google Scholar 

  13. Derix, C., Gamlesæter, Å., Carranza, P.M.: 3d Isovists and Spatial Sensations: Two methods and a case study. In: Movement and Orientation in Built Environments: Evaluating Design Rationale and User Cognition, pp. 67–72. Bremen (2008)

    Google Scholar 

  14. Suleiman, W., Joliveau, T., Favier, E.: A new algorithm for 3D isovists. In: Advances in Spatial Data Handling. pp. 157–173. Springer (2013). https://doi.org/10.1007/978-3-642-32316-4_11

  15. Díaz-Vilariño, L., González-deSantos, L., Verbree, E., Michailidou, G., Zlatanova, S.: From point clouds to 3D isovists in indoor environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 149–154 (2018). https://doi.org/10.5194/isprs-archives-XLII-4-149-2018

  16. Krukar, J., Manivannan, C., Bhatt, M., Schultz, C.: Embodied 3D isovists: A method to model the visual perception of space. Environ. Plan. B Urban Anal. City Sci. 48(8), 2307–2325 (2020). https://doi.org/10.1177/2399808320974533

  17. Fisher-Gewirtzman, D., Burt, M., Tzamir, Y.: A 3-D visual method for comparative evaluation of dense built-up environments. Environ. Plan. B Plan. Des. 30, 575–587 (2003). https://doi.org/10.1068/b2941

    Article  Google Scholar 

  18. Fisher-Gewirtzman, D., Wagner, I.A.: The spatial openness index: An automated model for three-dimensional visual analysis of urban environments. J. Archit. Plann. Res. 23, 77–89 (2006)

    Google Scholar 

  19. Yang, P.P.J., Putra, S.Y., Li, W.: Viewsphere: a GIS-based 3D visibility analysis for urban design evaluation. Environ. Plan. B Plan. Des. 34, 971–992 (2007). https://doi.org/10.1068/b32142

    Article  Google Scholar 

  20. Bittermann, M., Ciftcioglu, Ö.: Systematic measurement of perceptual design qualities. In: Proceedings of the ECCS 2005 Satellite Workshop: Embracing Complexity in Design, pp. 15–22. The Open University (2005)

    Google Scholar 

  21. Bittermann, M.S., Ciftcioglu, O.: Visual perception model for architectural design. J. Des. Res. 7, 35–60 (2008). https://doi.org/10.1504/JDR.2008.018776

    Article  Google Scholar 

  22. González, Á.: Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices. Math. Geosci. 42, 49–64 (2010). https://doi.org/10.1007/s11004-009-9257-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997). https://doi.org/10.1007/bf03024331

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Zheng, H., Liu, S. (2022). Measurement of Spatial Openness of Indoor Space Using 3D Isovists Methods and Fibonacci Lattices. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1280-1_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1279-5

  • Online ISBN: 978-981-19-1280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics