Skip to main content

Rethinking Computer-Aided Architectural Design (CAAD) – From Generative Algorithms and Architectural Intelligence to Environmental Design and Ambient Intelligence

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Design Imperatives: The Future is Now (CAAD Futures 2021)

Abstract

Computer-Aided Architectural Design (CAAD) finds its historical precedents in technological enthusiasm for generative algorithms and architectural intelligence. Current developments in Artificial Intelligence (AI) and paradigms in Machine Learning (ML) bring new opportunities for creating innovative digital architectural tools, but in practice this is not happening. CAAD enthusiasts revisit generative algorithms, while professional architects and urban designers remain reluctant to use software that automatically generates architecture and cities. This paper looks at the history of CAAD and digital tools for Computer Aided Design (CAD), Building Information Modeling (BIM) and Geographic Information Systems (GIS) in order to reflect on the role of AI in future digital tools and professional practices. Architects and urban designers have diagrammatic knowledge and work with design problems on symbolic level. The digital tools gradually evolved from CAD to BIM software with symbolical architectural elements. The BIM software works like CAAD (CAD systems for Architects) or digital board for drawing and delivers plans, sections and elevations, but without AI. AI has the capability to process data and interact with designers. The AI in future digital tools for CAAD and Computer-Aided Urban Design (CAUD) can link to big data and develop ambient intelligence. Architects and urban designers can harness the benefits of analytical ambient intelligent AIs in creating environmental designs, not only for shaping buildings in isolated virtual cubicles. However there is a need to prepare frameworks for communication between AIs and professional designers. If the cities of the future integrate spatially analytical AI, are to be made smart or even ambient intelligent, AI should be applied to improving the lives of inhabitants and help with their daily living and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratti, C., Duarte, F.: Data (Are) matter: data, technology, and urban design. In: Melendez, F., Diniz, N., Del Signore, M. (eds.) Data, Matter, Design: Strategies in Computational Design. Routledge, New York (2021)

    Google Scholar 

  2. Batty, M.: Inventing Future Cities. MIT Press, Cambridge Mass (2018)

    Book  Google Scholar 

  3. Gil, J.: City Information Modelling: a conceptual framework for research and practice in digital urban planning. Built Environ. 46(4), 501–527 (2020)

    Article  Google Scholar 

  4. Steenson, M.W.: Architectural Intelligence: How Designers and Architects Created the Digital Landscape. MIT Press, Cambridge, Mass (2017)

    Google Scholar 

  5. Negroponte, N.: The Architecture Machine. MIT Press, Cambridge Mass (1970)

    Google Scholar 

  6. Negroponte, N.: Soft Architecture Machines. MIT Press, Cambridge Mass (1975)

    Google Scholar 

  7. Cross, N.: The Automated Architect. Pion, London (1977)

    Google Scholar 

  8. Mitchell, W.J.: The theoretical foundation of computer-aided architectural design. Environ. Plann. B. Plann. Des. 2(2), 127–150 (1975)

    Article  Google Scholar 

  9. Mitchell, W.J.: Computer-Aided Architectural Design. Van Nostrand Reinhold, New York (1977)

    Google Scholar 

  10. Koenig, R., Bielik, M., Dennemark, M., Fink, T., Schneider, S., Siegmund, N.: Levels of automation in urban design through artificial intelligence. Built Environ. 46(4), 599–619 (2020)

    Article  Google Scholar 

  11. Parish, Y.I., Müller, P.: Procedural modeling of cities. In: The Proceedings of ACM SIGGRAPH, pp. 301–308 (2001)

    Google Scholar 

  12. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. In: The Proceedings of ACM SIGGRAPH, pp. 614–623 (2006)

    Google Scholar 

  13. SkylineEngine: http://ggg.udg.edu/skylineEngine/. Accessed 7 July 2021

  14. Castells, M.: The Informational City: Information Technology, Economic Restructuring, and the Urban-Regional Process. Basil Blackwell, Oxford (1989)

    Google Scholar 

  15. Boyer, M.C.: CyberCities: Visual Perception in the Age of Electronic Communication. Arch. Press, Princeton (1996)

    Google Scholar 

  16. Kitchin, R., Dodge, M.: Code/Space: Software and Everyday Life. MIT Press, Cambridge Mass (2011)

    Book  Google Scholar 

  17. Sutherland, I.E.: Sketchpad a man-machine graphical communication system. Doctoral Thesis, Massachusetts Institute of Technology (1963)

    Google Scholar 

  18. Johnson, T.E.: Sketchpad III, three dimensional graphical communication with a digital computer. Master of Science Thesis, Massachusetts Institute of Technology (1963)

    Google Scholar 

  19. Coons, S.A.: The uses of computers in technology. Sci. Am. 215(3), 176–191 (1966)

    Article  Google Scholar 

  20. Cross, N.: Developing design as a discipline. J. Eng. Des. 29(12), 691–708 (2018)

    Article  Google Scholar 

  21. Cross, N.: Human and Machine Roles in Computer Aided Design. Doctoral thesis, University of Manchester (1974)

    Google Scholar 

  22. Maver, T.W.: CAAD’s seven deadly sins. In: Sixth International Conference on Computer-Aided Architectural Design Futures, pp. 21–22 (1995)

    Google Scholar 

  23. Mitchell, W.J., Steadman, J.P., Liggett, R.S.: Synthesis and optimization of small rectangular floor plans. Environ. Plann. B. Plann. Des. 3(1), 37–70 (1976)

    Article  Google Scholar 

  24. Mitchell, W.J.: The Logic of Architecture. MIT Press, Cambridge Mass (1990)

    Google Scholar 

  25. Steadman, P., Rooney, J. (eds.): Principles of Computer-Aided Design. Pitman, London (1987)

    MATH  Google Scholar 

  26. Steadman, P.: Sketch for an archetypal building. Environ. Plann. B. Plann. Des. 25(7), 92–105 (1998)

    Article  Google Scholar 

  27. Steadman, P., Mitchell, L.J.: Architectural morphospace: mapping worlds of built forms. Environ. Plann. B. Plann. Des. 37(2), 197–220 (2010)

    Article  Google Scholar 

  28. Lynn, G.: Folds, bodies and blobs. La Letrre Volée, Bruxelles (1998)

    Google Scholar 

  29. Lynn, G.: Animate Form. Princeton Architectural Press, New York (1999)

    Google Scholar 

  30. Lynn, G. (ed.): Archaeology of the Digital. Sternberg Press, Berlin (2013)

    Google Scholar 

  31. Goodhouse, A.: When is the Digital in Architecture? Sternberg Press, Berlin (2017)

    Google Scholar 

  32. Keller, S.: Automatic Architecture: Motivating Form After Modernism. University of Chicago Press, Chicago (2018)

    Google Scholar 

  33. Stiny, G.: Introduction to shape and shape grammars. Environ. Plann. B. Plann. Des. 7(3), 343–351 (1980)

    Article  Google Scholar 

  34. Beirão, J.N. Duarte, J.P.: Urban grammars: towards flexible urban design. In: Proceedings of the 23rd Conference on Education in Computer Aided Architectural Design in Europe (sCAADe), pp. 491–500 (2005)

    Google Scholar 

  35. Beirão, J.N., Duarte, J.P. Stouffs, R.: Structuring a generative model for urban design: linking GIS to shape grammars. In: Proceedings of the 26th Conference on Education in Computer Aided Architectural Design in Europe (eCAADe), pp. 929–938 (2008)

    Google Scholar 

  36. Beirao, J.N., Mendes, G., Duarte, J., Stouffs, R.: Implementing a generative urban design model: grammar-based design patterns for urban design. In: Proceedings of the 28th Conference on Education in Computer Aided Architectural Design in Europe (eCAADe), pp. 265–274 (2010).

    Google Scholar 

  37. Beirão, J., Duarte, J., Stouffs, R., Bekkering, H.: Designing with urban induction patterns: a methodological approach. Environ. Plann. B. Plann. Des. 39(4), 665–682 (2012)

    Google Scholar 

  38. Duarte, J.P., Beirão, J.N., Montenegro, N., Gil, J.: City induction: a model for formulating, generating, and evaluating urban designs. In: Arisona, S.M., Aschwanden, G., Halatsch, J., Wonka, P. (ed.) Digital Urban Modeling and Simulation, pp. 73–98, (2012)

    Google Scholar 

  39. Gil, J., Montenegro, N., Duarte, J.: Assessing computational tools for urban design - towards a “city information model”. In: Proceedings of the 28th Conference on Education in Computer Aided Architectural Design in Europe (eCAADe), pp. 361–369 (2010)

    Google Scholar 

  40. Gil, J.A., Almeida, J., Duarte, J.P.: The backbone of a City Information Model (CIM): implementing a spatial data model for urban design. In: Proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (eCAADe), pp. 143–151 (2011)

    Google Scholar 

  41. Gil, J., Beirão, J.N., Montenegro, N., Duarte, J.P.: On the discovery of urban typologies: data mining the many dimensions of urban form. Urban Morphol. 16(1), 27–34 (2012)

    Article  Google Scholar 

  42. Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)

    Google Scholar 

  43. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York (1977)

    Google Scholar 

  44. Alexander, C., Neis, H., Anninou, A., King, I.: A New Theory of Urban Design. Oxford University Press, New York (1987)

    Google Scholar 

  45. Conzen, M.R.G.: Alnwick, Northumberland: a study in town-plan analysis. Trans. Papers (Inst. Br. Geogr.) 27, iii–122 (1960)

    Article  Google Scholar 

  46. Moudon, A.V.: Urban morphology as an emerging interdisciplinary field. Urban Morphol. 1(1), 3–10 (1997)

    Article  Google Scholar 

  47. Kropf, K.: Morphological investigations: cutting into the substance of urban form. Built Environ. 37(4), 393–408 (2011)

    Article  Google Scholar 

  48. Kropf, K.: Ambiguity in the definition of built form. Urban Morphol. 18(1), 41–57 (2014)

    Article  Google Scholar 

  49. Scheer, B.C.: The Evolution of Urban Form: Typology for Planners and Architects. Am. Plann. Assoc., Chicago (2010)

    Google Scholar 

  50. Scheer, B.C.: The epistemology of urban morphology. Urban Morphol. 20(1), 5–17 (2016)

    Article  Google Scholar 

  51. Stojanovski, T., Östen, A.: Typo-morphology and environmental perception of urban space. In: Proceedings of the XXVth International Seminar for Urban Form, pp. 816–821 (2018)

    Google Scholar 

  52. Stojanovski, T.: Urban Form and Mobility-Analysis and Information to Catalyse Sustainable Development Doctoral dissertation, KTH Royal Institute of Technology (2019)

    Google Scholar 

  53. Oliveira, V., Monteiro, C., Partanen, J.: A comparative study of urban form. Urban Morphol. 19(1), 72–92 (2015)

    Google Scholar 

  54. Sanders, P.S., Woodward, S.A.: Morphogenetic analysis of architectural elements within the townscape. Urban Morphol. 19(1), 5–24 (2015)

    Article  Google Scholar 

  55. Sanders, P., Baker, D.: Applying urban morphology theory to design practice. J. Urban Des. 21(2), 213–233 (2016)

    Article  Google Scholar 

  56. Roglà, O., Pelechano, Patow, G.N.: Procedural semantic cities. In: CEIG 2017: XXVII Spanish Computer Graphics Conference: European Association for Computer Graphics (Eurographics), pp. 113–120 (2017)

    Google Scholar 

  57. Martin, I., Patow, G.: Ruleset-rewriting for procedural modeling of buildings. Comput. Graph. 84, 93–102 (2019)

    Article  Google Scholar 

  58. Vanegas, C.A., Aliaga, D.G., Wonka, P., Müller, P., Waddell, P., Watson, B.: Modelling the appearance and behaviour of urban spaces. Comput. Graph. Forum 29(1), 25–42 (2010)

    Article  Google Scholar 

  59. Vanegas, C.A., Kelly, T., Weber, B., Halatsch, J., Aliaga, D.G., Müller, P.: Procedural generation of parcels in urban modeling. Comput. Graph. Forum 31(2), 681–690 (2012)

    Google Scholar 

  60. Besuievsky, G., Patow, G.: Customizable LOD for procedural architecture. Comput. Graph. Forum 32(8), 26–34 (2013)

    Article  Google Scholar 

  61. Biljecki, F., Ledoux, H., Stoter, J.: Generating 3D city models without elevation data. Comput. Environ. Urban Syst. 64, 1–18 (2017)

    Article  Google Scholar 

  62. Biljecki, F., Ledoux, H., Stoter, J.: An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 59, 25–37 (2016)

    Article  Google Scholar 

  63. Kelly T., Guerrero, P., Steed, A., Wonka, P., Mitra. N.J.: FrankenGAN: guided detail synthesis for building mass models using style-synchonized GANs. ACM Trans. Graph. 37(6), 216 (2018)

    Google Scholar 

  64. Alexander, C.A.: Much asked question about computers and design. In: Proceedings of the conference Architecture and the Computer, pp. 52–54 (1964)

    Google Scholar 

  65. Ingram, J.: Understanding BIM: The Past. Present and Future. Routledge, London (2020)

    Book  Google Scholar 

  66. Stojanovski, T., Partanen, J., Samuels, I., Sanders, P., Peters, C.: City information modelling (CIM) and digitizing urban design practices. Built Environ. 46(4), 637–646 (2020)

    Article  Google Scholar 

  67. Stojanovski, T.: City information modeling (CIM) and urbanism: Blocks, connections, territories, people and situations. In: Proceedings of the 4th Symposium on Simulation for Architecture and Urban Design, pp. 86–93 (2013)

    Google Scholar 

  68. Stojanovski, T.: City Information Modelling (CIM) and urban design: morphological structure, design elements and programming classes in CIM. In Proceedings of the 36th Conference on Education in Computer Aided Architectural Design in Europe (eCAADe), pp. 507–529 (2018)

    Google Scholar 

  69. Negroponte, N., Grossier, L.: Urban 5: A machine that discusses urban design. In: Goore, G.T. (eds.) Emerging Methods in Environmental Design and Planning. MIT Press, Cambridge, Mass., pp. 105–114 (1970)

    Google Scholar 

  70. Minsky, M.: The uses of computers in technology. Sci. Am. 215(3), 246–263 (1966)

    Article  Google Scholar 

  71. Guo, X., Shen, Z., Zhang, Y., Wu, T.: Review on the application of artificial intelligence in smart homes. Smart Cities 2(3), 402–420 (2019)

    Article  Google Scholar 

  72. Allam, Z., Dhunny, Z.A.: On big data, artificial intelligence and smart cities. Cities 89, 80–91 (2019)

    Article  Google Scholar 

  73. Ullah, Z., Al-Turjman, F., Mostarda, L., Gagliardi, R.: Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 154, 313–323 (2020)

    Google Scholar 

  74. Kim, J., Song, J., Lee J-K.: Approach to auto-recognition of design elements for the intelligent management of interior pictures. In: Proceedings of the CAADRIA Conference (2019)

    Google Scholar 

  75. Lin, B., Jabi, W., Diao, R.: Urban space simulation based on wave function collapse and convolutional neural network. In: Proceedings of the SimAUD Conference, pp. 145–52 (2020)

    Google Scholar 

  76. Jabi, W., Alymani, A.: Graph machine learning using 3D topological models. In: Proceedings of the SimAUD Conference, pp. 427–34 (2020)

    Google Scholar 

  77. Xia, X., Tong, Z.A.: Machine learning-based method for predicting urban land use. In: Proceedings of the CAADRIA Conference (2020)

    Google Scholar 

  78. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

    Google Scholar 

  79. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  80. Ren, Y., Zheng, H.: The Spire of AI - Voxel-based 3D neural style transfer. In: Proceedings of the CAADRIA Conference (2020)

    Google Scholar 

  81. Kinugawa, H., Takizawa, A.: Deep learning model for predicting preference of space by estimating the depth information of space using omnidirectional images. In: Proceedings of the ECAADE SIGRADI Conference (2019)

    Google Scholar 

  82. Noyman, A., Larson, K.: A deep image of the city: generative urban-design visualization. In: Proceedings of the SimAUD Conference (2020)

    Google Scholar 

  83. Alexander, C.: Notes on the Synthesis of Form. Harvard University Press, Cambridge, Mass. (1973 [1964])

    Google Scholar 

  84. Schön, D.A.: Designing: rules, types and words. Des. Stud. 9(3), 181–190 (1988)

    Article  Google Scholar 

  85. Dovey, K., Pafka, E.: The science of urban design? Urban Des. Int. 21(1), 1–10 (2016)

    Article  Google Scholar 

  86. Marshall, S., Çalişkan, O.: A joint framework for urban morphology and design. Built Environ. 37(4), 409–426 (2011)

    Article  Google Scholar 

  87. Samuels, I.: A typomorphological approach to design: the plan for St Gervais. Urban Des. Int. 4(3–4), 129–141 (1999)

    Article  Google Scholar 

  88. Samuels, I.: Typomorphology and urban design practice. J. Urban Morphol. 12(1), 58–62 (2008)

    Article  Google Scholar 

  89. Marshall, S.: Science, pseudo-science and urban design. Urban Des. Int. 17(4), 257–271 (2012)

    Article  Google Scholar 

  90. Cullen, G.: The Concise Townscape. Architectural Press, London (1961)

    Google Scholar 

  91. Cullen, G.: Notations 1–4. The Architects’ J. (supplements) (1967)

    Google Scholar 

  92. Rapoport, A.: Human Aspects of Urban Form: Towards A Man—Environment Approach to Urban Form and Design. Pergamon Press, London (1977)

    Google Scholar 

Download references

Acknowledgements

The authors of this paper gratefully acknowledge the grants P44455-1 and P44455-2 from the Swedish Energy Agency, Energimyndigheten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor Stojanovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stojanovski, T. et al. (2022). Rethinking Computer-Aided Architectural Design (CAAD) – From Generative Algorithms and Architectural Intelligence to Environmental Design and Ambient Intelligence. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1280-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1279-5

  • Online ISBN: 978-981-19-1280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics