Skip to main content

Siamese Network for Salivary Glands Segmentation

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Abstract

Our project aims to help physicians and experts, to diagnose Gougerot-Sjögren’s syndrome, by segmenting salivary glands, on ultrasound images (US). Our database contains 1143 US images of left and right parotid and sub-mandibular glands obtained with a Toshiba Aplio 800 at the CHRU hospital of Brest. This manuscript proposes a method based on a Siamese architecture with a Convolutional Neural Network. To reach our goal with a relatively small database, we train the Siamese network for texture differentiation on a gray-level texture dataset, that can be transferred without any further retraining, to segment salivary glands on a US dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramos-Casals, M., Brito-Zerón, P., Sisó-Almirall, A., Bosch, X.: Primary Sjögren syndrome. BMJ 344 (2012). https://doi.org/10.1136/bmj.e3821

  2. Devoize, L., Salivation, R.D.: EMC—Médecine Buccale (2010)

    Google Scholar 

  3. Harris, V.M., Scofield, R.H., Sivils, K.L.: Genetics in Sjögren’s syndrome: where we are and where we go. Clin. Exp. Rheumatol. 37(Suppl. 118), 234–239 (2019)

    Google Scholar 

  4. Chisholm, D., Mason, D.: Labial salivary gland biopsy in Sjögren’s disease. J. Clin. Pathol. 21(5), 656–660 (1968)

    Article  Google Scholar 

  5. Doare, E., Jousse-Joulin, S., Pers, J.-O., Devauchelle-Pensec, V., Saraux, A.: Syndrome de gougerot-sjogren primitif. Appareil locomoteur 1(1), 1 (2020). https://doi.org/10.1016/S0246-0521(20)41579-7

    Article  Google Scholar 

  6. Kise, Y., Shimizu, M., Ikeda, H., Fujii, T., Kuwada, C., Nishiyama, M., Funakoshi, T., Ariji, Y., Fujita, H., Katsumata, A., Yoshiura, K., Ariji, E.: Usefulness of a deep learning system for diagnosing Sjögren’s syndrome using ultrasonography images. Dentomaxillofac. Radiol. 49(3), 20190348 (2020). https://doi.org/10.1259/dmfr.20190348. PMID: 31804146

    Article  Google Scholar 

  7. Berthomier, T., Mansour, A., Bressollette, L., Le Roy, F., Mottier, D.: Venous blood clot structure characterization using scattering operator. In: International Conference on Frontiers of Signal Processing (ICFSP), pp. 73–80 (2016). https://doi.org/10.1109/ICFSP.2016.7802960

  8. Berthomier, T., Mansour, A., Bressollette, L., Le Roy, F., Mottier, D., Fréchier, L., Hermenault, B.: Scattering operator and spectral clustering for ultrasound images: application on deep venous thrombi. In: World Academy of Science, Engineering and Technology, vol. 11, pp. 630–637 (2017)

    Google Scholar 

  9. Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., Forster, K., Aerts, H.J., Dekker, A., Fenstermacher, D.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012)

    Article  Google Scholar 

  10. Vukicevic, A.M., Milic, V., Zabotti, A., Hocevar, A., De Lucia, O., Filippou, G., Frangi, A.F., Tzioufas, A., De Vita, S., Filipovic, N.: Radiomics-based assessment of primary Sjögren’s syndrome from salivary gland ultrasonography images. IEEE J. Biomed. Health Inform. 24(3), 835–843 (2019)

    Article  Google Scholar 

  11. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012). https://doi.org/10.1109/CVPR.2012.6248110

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015). Springer

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Olivier, A., Hoffmann, C., Mansour, A., Bressollette, L., Clement, B.: Survey on machine learning applied to medical image analysis. In: 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6 (2021). IEEE

    Google Scholar 

  15. Vukicevic, A.M., Radovic, M., Zabotti, A., Milic, V., Hocevar, A., Callegher, S.Z., De Lucia, O., De Vita, S., Filipovic, N.: Deep learning segmentation of primary Sjögren’s syndrome affected salivary glands from ultrasonography images. Comput. Biol. Med. 129, 104154 (2021). https://doi.org/10.1016/j.compbiomed.2020.104154

    Article  Google Scholar 

  16. Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., Lecun, Y., Moore, C., Säckinger, E., Shah, R.: Signature verification using a “Siamese’’ time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 07(04), 669–688 (1993). https://doi.org/10.1142/S0218001493000339

    Article  Google Scholar 

  17. Baldi, P., Chauvin, Y.: Neural networks for fingerprint recognition. Neural Comput. 5(3), 402–418 (1993). https://doi.org/10.1162/neco.1993.5.3.402

    Article  Google Scholar 

  18. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 539–5461 (2005). https://doi.org/10.1109/CVPR.2005.202

  19. Yamada, R., Ide, H., Yudistira, N., Kurita, T.: Texture segmentation using Siamese network and hierarchical region merging. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2735–2740 (2018). https://doi.org/10.1109/ICPR.2018.8545348

  20. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans. Evol. Comput. 21(1), 83–101 (2017). https://doi.org/10.1109/TEVC.2016.2577548

    Article  Google Scholar 

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabin Fodop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fodop, G. et al. (2022). Siamese Network for Salivary Glands Segmentation. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 309. Springer, Singapore. https://doi.org/10.1007/978-981-19-3444-5_39

Download citation

Publish with us

Policies and ethics