Skip to main content

Decentralized Predictive Enterprise Resource Planning Framework on Private Blockchain Networks Using Neural Networks

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1491))

  • 748 Accesses

Abstract

Theoretically, cross-department predictive modeling can improve the operational efficiency of an enterprise, particularly on enterprise resource planning. For example, a model that predicts the volume of purchase goods will be more generalizable if the predication is based on the data from multiple departments. Most existing cross-department predictive models rely on a centralized technology, in which security and robustness are ignored, including unreliable single-point or malicious modification of records. Therefore, our works propose a decentralized framework to combine Blockchain technology with exited model so as to apply in predictive enterprise resource planning. In detail, model parameter estimation will be trained by without revealing any other information, which means only model-related data are exchanged across departments. In order to apply transaction metadata to disseminate models, we introduce neural networks combine with a private Blockchain network. In addition, we design an algorithm to train the neural networks that combine the loss function from each local model to achieve the smallest global level validation loss. Finally, we implement the experiments to prove the effectiveness of our framework by applying it to multi typical tasks in enterprise resource planning. Experimental results reveal the advantages of this framework on both tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Jiang, X., Wu, Y., Cui, L., Cheng, S., Ohno-Machado, L.: Expectation propagation logistic regression (explorer): distributed privacy-preserving online model learning. J. Biomed. Inform. 46, 480–496 (2013)

    Article  Google Scholar 

  2. Wu, Y., Jiang, X., Kim, J., Ohno-Machado, L.: Grid binary logistic regression (GLORE): building shared models without sharing data. J. Am. Med. Inform. Assoc. 19, 758–764 (2012)

    Article  Google Scholar 

  3. Fromknecht, C., Velicanu, D., Yakoubov, D.: A decentralized public key infrastructure with identity retention. IACR Cryptology ePrint Archive, p. 803 (2014)

    Google Scholar 

  4. Luu, L., Narayanan, V., Zheng, K.B.C., Gilbert, S., Saxena, P.: SCP: a computationally-scalable byzantine consensus protocol for blockchains. Cryptology ePrint Archive Report, p. 1168 (2015)

    Google Scholar 

  5. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst 4, 382–401 (1982)

    Article  Google Scholar 

  6. Bissias, G., Ozisik, A.P., Levine, B.N., Liberatore, M.: Sybil-resistant mixing for bitcoin. Proceedings of the 13th Workshop on Privacy in the Electronic Society, pp. 149–158 (2014)

    Google Scholar 

  7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  8. Jiang, W., et al.: WebGLORE: a web service for grid logistic regressions. Bioinformatics 29, 3238–3240 (2013)

    Article  Google Scholar 

  9. Yan, F., Sundaram, S., Vishwanathan, S., Qi, Y.: Distributed autonomous online learning: regrets and intrinsic privacy preserving properties. IEEE Trans. Knowl. Data. Eng. 25, 2483–2493 (2013)

    Article  Google Scholar 

  10. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

  11. Mainelli, M., Smith, M.: Sharing ledgers for sharing economies: an exploration of mutual distributed ledgers (aka blockchain technology). J. Finance Perspect. 3, 38–69 (2015)

    Google Scholar 

  12. Buterin, V.: A next-generation smart contract and decentralized application platform. White Paper (2014)

    Google Scholar 

  13. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Sebastopol (2015)

    Google Scholar 

  14. Maesa, D.D.F., Mori, P.: Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 138, 99–114 (2020)

    Article  Google Scholar 

  15. Irving, G., Holden, J.: How blockchain-timestamped protocols could improve the trustworthiness of medical science. F1000Research 5, 222 (2016)

    Article  Google Scholar 

  16. McKernan, K.J.: The chloroplast genome hidden in plain sight, open access publishing and anti-fragile distributed data sources. Mitochondrial DNA 27, 1–2 (2015)

    Google Scholar 

  17. Jenkins, J., Kopf, J., Tran, B.Q., Frenchi, C., Szu, H.: Bio-mining for biomarkers with a multi-resolution block chain. In: Spie Sensing Technology + Applications, pp. 1–10 (2015)

    Google Scholar 

  18. Baxendale, G.: Can blockchain revolutionise EPRs? ITNOW 58, 38–39 (2016)

    Article  Google Scholar 

  19. Witchey, N.J.: Healthcare transaction validation via blockchain proof-of-work, systems and methods. Patent 20150332283, A1 (2015)

    Google Scholar 

  20. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., Wang, F.: Secure and trustable electronic medical records sharing using blockchain. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 650. American Medical Informatics Association (2017)

    Google Scholar 

  21. Ekblaw, A., Azaria, A., Halamka, J.D., Lippman, A.: A case study for blockchain in healthcare: “medrec” prototype for electronic health records and medical research data. In: Proceedings of IEEE Open and Big Data Conference, vol. 13, p. 13 (2016)

    Google Scholar 

  22. Coelho, F.C.: Optimizing disease surveillance by reporting on the blockchain. bioRxiv, p. 278473 (2018)

    Google Scholar 

  23. Gem (2019). https://gem.co/health/. Accessed 30 Nov 2019

  24. Healthcare working group (2019). https://www.hyperledger.org/industries/healthcare. Accessed 30 Nov 2019

  25. Lai, S.W., Xu, L.H., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Proceedings of the 29th International Conference on Artificial Intelligence, pp. 2267–2273 (2015)

    Google Scholar 

  26. Buhmann, M.D.: Radial basis functions: theory and implementations. Cambridge University, Cambridge (2003)

    Book  Google Scholar 

  27. Hyndman, J.B., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Qin, Y., Li, Y., Cheng, B., Lin, Z., Zhu, J. (2022). Decentralized Predictive Enterprise Resource Planning Framework on Private Blockchain Networks Using Neural Networks. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1491. Springer, Singapore. https://doi.org/10.1007/978-981-19-4546-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4546-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4545-8

  • Online ISBN: 978-981-19-4546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics