Skip to main content

A Semi-supervised Video Object Segmentation Method Based on Adaptive Memory Module

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1491))

  • 875 Accesses

Abstract

Video object segmentation has becoming a hot research topic in the computer vision society, with a wide range of applications, such as autonomous driving, video editing, and video surveillance. However, due to the complexity of video data, video object segmentation still faces challenges like occlusion, object appearance changes, and similar objects. Previous methods mainly tackle this task by using the memory module, but the computation cost will linearly increase along with the length of the video. To deal with the issue of the previous memory-based method, we proposed a cascaded semi-supervised video object framework with an adaptive memory module. In addition, we use a cascaded instance tracker to find the object and reduce the image resolutions, and we further use a boundary estimation branch to improve the accuracy. Experimental results on several benchmarks demonstrate the effectiveness and efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-TaixĆ©, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of CVPR, pp. 222ā€“230 (2017)

    Google Scholar 

  2. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of CVPR, pp. 1189ā€“1198 (2018)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770ā€“778 (2016)

    Google Scholar 

  4. Hu, Y.T., Huang, J.B., Schwing, A.G.: VideoMatch: matching based video object segmentation. In: Proceedings of ECCV, pp. 54ā€“70 (2018)

    Google Scholar 

  5. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656ā€“671. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_43

    Chapter  Google Scholar 

  6. Jampani, V., Gadde, R., Gehler, P.V.: Video propagation networks. In: Proceeding of CVPR, pp. 451ā€“461 (2017)

    Google Scholar 

  7. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of CVPR, pp. 8953ā€“8962 (2019)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Proc. NeurIPS 25, 1097ā€“1105 (2012)

    Google Scholar 

  9. Li, Yu., Shen, Z., Shan, Y.: Fast video object segmentation using the global context module. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 735ā€“750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_43

    Chapter  Google Scholar 

  10. Luiten, J., Voigtlaender, P., Leibe, B.: PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 565ā€“580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_35

    Chapter  Google Scholar 

  11. Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE TPAMI 41(6), 1515ā€“1530 (2018)

    Article  Google Scholar 

  12. Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of CVPR, pp. 7376ā€“7385 (2018)

    Google Scholar 

  13. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of ICCV, pp. 9226ā€“9235 (2019)

    Google Scholar 

  14. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of CVPR, pp. 2663ā€“2672 (2017)

    Google Scholar 

  15. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of CVPR, pp. 724ā€“732 (2016)

    Google Scholar 

  16. Perazzi, F., Wang, O., Gross, M., Sorkine-Hornung, A.: Fully connected object proposals for video segmentation. In: Proceedings of ICCV, pp. 3227ā€“3234 (2015)

    Google Scholar 

  17. Pont-Tuset, J., Perazzi, F., Caelles, S., ArbelƔez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675 (2017)

  18. Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: Proceedings of CVPR, pp. 1ā€“8 (2007)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Proceedings of MICCAI, pp. 234ā€“241 (2015)

    Google Scholar 

  20. Seong, H., Hyun, J., Kim, E.: Kernelized memory network for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 629ā€“645. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_38

    Chapter  Google Scholar 

  21. Shin Yoon, J., Rameau, F., Kim, J., Lee, S., Shin, S., So Kweon, I.: Pixel-level matching for video object segmentation using convolutional neural networks. In: Proceedings of ICCV, pp. 2167ā€“2176 (2017)

    Google Scholar 

  22. Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: Proceedings of CVPR, pp. 3899ā€“3908 (2016)

    Google Scholar 

  23. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of CVPR, pp. 9481ā€“9490 (2019)

    Google Scholar 

  24. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)

  25. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of CVPR, pp. 1328ā€“1338 (2019)

    Google Scholar 

  26. Wang, Z., et al.: Understanding human activities in videos: a joint action and interaction learning approach. Neurocomputing 321, 216ā€“226 (2018)

    Article  Google Scholar 

  27. Wang, Z., Xu, J., Liu, L., Zhu, F., Shao, L.: RANeT: ranking attention network for fast video object segmentation. In: Proceedings of CVPR, pp. 3978ā€“3987 (2019)

    Google Scholar 

  28. Wei, J., Wang, S., Wu, Z., Su, C., Huang, Q., Tian, Q.: Label decoupling framework for salient object detection. In: Proceedings of CVPR, pp. 13025ā€“13034 (2020)

    Google Scholar 

  29. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā€“19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  30. Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S., Huang, T.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603ā€“619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36

    Chapter  Google Scholar 

  31. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of AAAI, vol. 34, pp. 12549ā€“12556 (2020)

    Google Scholar 

  32. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Proceedings of ECCV, pp. 332ā€“348 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Nature Science Foundation of China (No. 61876159, 61806172, 62076116, U1705286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Luo, Z., Cao, D., Lin, D., Su, S., Li, S. (2022). A Semi-supervised Video Object Segmentation Method Based on Adaptive Memory Module. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1491. Springer, Singapore. https://doi.org/10.1007/978-981-19-4546-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4546-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4545-8

  • Online ISBN: 978-981-19-4546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics