Abstract
Video object segmentation has becoming a hot research topic in the computer vision society, with a wide range of applications, such as autonomous driving, video editing, and video surveillance. However, due to the complexity of video data, video object segmentation still faces challenges like occlusion, object appearance changes, and similar objects. Previous methods mainly tackle this task by using the memory module, but the computation cost will linearly increase along with the length of the video. To deal with the issue of the previous memory-based method, we proposed a cascaded semi-supervised video object framework with an adaptive memory module. In addition, we use a cascaded instance tracker to find the object and reduce the image resolutions, and we further use a boundary estimation branch to improve the accuracy. Experimental results on several benchmarks demonstrate the effectiveness and efficiency of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-TaixĆ©, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of CVPR, pp. 222ā230 (2017)
Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of CVPR, pp. 1189ā1198 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770ā778 (2016)
Hu, Y.T., Huang, J.B., Schwing, A.G.: VideoMatch: matching based video object segmentation. In: Proceedings of ECCV, pp. 54ā70 (2018)
Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656ā671. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_43
Jampani, V., Gadde, R., Gehler, P.V.: Video propagation networks. In: Proceeding of CVPR, pp. 451ā461 (2017)
Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of CVPR, pp. 8953ā8962 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Proc. NeurIPS 25, 1097ā1105 (2012)
Li, Yu., Shen, Z., Shan, Y.: Fast video object segmentation using the global context module. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 735ā750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_43
Luiten, J., Voigtlaender, P., Leibe, B.: PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 565ā580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_35
Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE TPAMI 41(6), 1515ā1530 (2018)
Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of CVPR, pp. 7376ā7385 (2018)
Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of ICCV, pp. 9226ā9235 (2019)
Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of CVPR, pp. 2663ā2672 (2017)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of CVPR, pp. 724ā732 (2016)
Perazzi, F., Wang, O., Gross, M., Sorkine-Hornung, A.: Fully connected object proposals for video segmentation. In: Proceedings of ICCV, pp. 3227ā3234 (2015)
Pont-Tuset, J., Perazzi, F., Caelles, S., ArbelƔez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675 (2017)
Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: Proceedings of CVPR, pp. 1ā8 (2007)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Proceedings of MICCAI, pp. 234ā241 (2015)
Seong, H., Hyun, J., Kim, E.: Kernelized memory network for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 629ā645. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_38
Shin Yoon, J., Rameau, F., Kim, J., Lee, S., Shin, S., So Kweon, I.: Pixel-level matching for video object segmentation using convolutional neural networks. In: Proceedings of ICCV, pp. 2167ā2176 (2017)
Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: Proceedings of CVPR, pp. 3899ā3908 (2016)
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of CVPR, pp. 9481ā9490 (2019)
Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of CVPR, pp. 1328ā1338 (2019)
Wang, Z., et al.: Understanding human activities in videos: a joint action and interaction learning approach. Neurocomputing 321, 216ā226 (2018)
Wang, Z., Xu, J., Liu, L., Zhu, F., Shao, L.: RANeT: ranking attention network for fast video object segmentation. In: Proceedings of CVPR, pp. 3978ā3987 (2019)
Wei, J., Wang, S., Wu, Z., Su, C., Huang, Q., Tian, Q.: Label decoupling framework for salient object detection. In: Proceedings of CVPR, pp. 13025ā13034 (2020)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S., Huang, T.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603ā619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36
Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of AAAI, vol. 34, pp. 12549ā12556 (2020)
Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Proceedings of ECCV, pp. 332ā348 (2020)
Acknowledgement
This work is supported by the National Nature Science Foundation of China (No. 61876159, 61806172, 62076116, U1705286).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, S., Luo, Z., Cao, D., Lin, D., Su, S., Li, S. (2022). A Semi-supervised Video Object Segmentation Method Based on Adaptive Memory Module. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2021. Communications in Computer and Information Science, vol 1491. Springer, Singapore. https://doi.org/10.1007/978-981-19-4546-5_34
Download citation
DOI: https://doi.org/10.1007/978-981-19-4546-5_34
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-4545-8
Online ISBN: 978-981-19-4546-5
eBook Packages: Computer ScienceComputer Science (R0)