Skip to main content

The Effect of Solvents on the Oxidation of Acetaldehyde Using TOPSIS Method in a Fuzzy Environment

  • Chapter
  • First Online:
Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 420))

  • 244 Accesses

Abstract

Researchers and practitioners have focused on MCDM methodologies for analyzing, rating, and ranking alternatives in a variety of industries. In this paper, acetaldehyde is oxidized in several solvents, including CF, DCE, DCM, DMSO, ACETONE, and DMF, with BIFC, BPCC, PCC, MCC, and QFC. Due to uncertainty and ambiguity in measuring at different temperatures, it is not possible to classify the situation as crisp. We used a fuzzy approach to deal with the scenario. The TOPSIS technique is used to select the strongest solvent from a large number of available alternatives. With the help of the TOPSIS technique, we discovered that the declining sequence of solvents for rapid reactions is DMSO > DMF > DCE > ACETONE > DCM > CF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corey, E.J., Suggs, W.J.: Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 2647 (1975)

    Google Scholar 

  2. Guziec, F.S., Luzio, F.A.: Aquachloroiridium (III)-catalyzed oxidation of some unsaturated acids in acetone by acidic quinolinium fluorochromate. Synthesis 691 (1980)

    Google Scholar 

  3. Bhattacharjee, M.N., Choudhuri, M.K., Dasgupta, H.S., Roy, N., Khathing, D.T.: Pyridinium fluorochromate; a new and efficient oxidant for organic substrates. Synthesis 588 (1982)

    Google Scholar 

  4. Balasubramanian, K., Prathiba, V.: Quinolinium dichromate—A new reagent for oxidation of alcohols. Indian J. Chem. 25B, 326 (1986)

    Google Scholar 

  5. Pandurangan, A., Murugesan, V., Palamichamy, P.: Quinolinium bromochromate: A new, selective and efficient reagent for the oxidation of alcohols in anhydrous acetic acid. J. Indian Chem. Soc. 72, 479 (1995)

    Google Scholar 

  6. Agarwal, S., Choudhary, K., Banerji, K.K.: Kinetics and mechanism of the oxidation of the aromatic aldehydes by pyridinium fluorochromate. J. Org. Chem. 56, 5111 (1991)

    Article  Google Scholar 

  7. Vadera, K., Yajurvedi, D., Purohit, P., Mishra, P., Sharma, P.K.: Structure-rate relationship in the oxidation of substituted benzaldehydes by pyridinium bromochromate: A Kinetic and mechanistic study. Proc. React. Kinet. Mech. 35, 265 (2010)

    Article  Google Scholar 

  8. Gehlot, M., Prasadrao, P., Sharma, V.: Structure-reactivity correlation in the oxidation of substituted benzaldehydes by tetraethylammonium chlorochromate. Asian J. Chem. 23(3), 1173 (2011)

    Google Scholar 

  9. Pohani, S., Sharma, D., Panchariya, P., Sharma, P.K.: Structure-reactivity correlation in the oxidation of substituted benzaldehydes by quinolinium bromochromate. J. Ind. Council Chem. 27(2), 122 (2010)

    Google Scholar 

  10. Purohit, T., Banerji, J., Kotai, L., Banerji, K.K., Sharma, P.K.: Kinetics and mechanism of the oxidation of substituted benzaldehydes with bis-(pyridine) silver permanganate. J. Indian Chem. Soc. 89(8), 1045 (2012)

    Google Scholar 

  11. Barthora, S., Baghmar, D., Gilla, M., Choudhary, A., Sharma, V.: Structure-reactivity correlation in the oxidation of substituted benzaldehydes by benzyltriethylammonium chlorochromate. J. Chem. Biol. Phys. Sc. 1(1), 07 (2011)

    Google Scholar 

  12. Daiya, A., Purohit, P., Kumbhat, R., Kotai, L., Sharma, V.: Structure-rate-reactivity correlation in the oxidation of substituted benzaldehydes by imidazolium fluorochromate. Int. J. Chem. 1(2), 230 (2012)

    Google Scholar 

  13. Chouhan, K., Prasadrao, P., Sharma, P.K.: The kinetics and mechanism of oxidation of aliphatic aldehydes by benzyltriethylammonium chlorochromate. J. Indian Chem. Soc. 83, 191 (2006)

    Google Scholar 

  14. Kumbhat, R., Sharma, V., Banerji, K.K.: Kinetics and mechanism of oxidation of aliphatic aldehydes by quinolinium bromochromate. Oxid. Commun. 30(1), 97 (2007)

    Google Scholar 

  15. Patel, M., Poonam, Jha, K., Baghmar, M., Kothari, A., Shastri, I., Sharma, P.K.: Oxidation of some aliphatic aldehydes by tetrakis(pyridine) silver dichromate. Kinetics and mechanism of the (TPSD). J. Indian Chem. Soc. 89(8), 1149 (2012)

    Google Scholar 

  16. Soni, U., Yajurvedi, D., Vyas, S., Prakash, O., Sharma, P.K.: Correlation analysis of reactivity in the oxidation of substituted benzaldehydes by bis[dipyridinesilver(i)]dichromate. Eur. Chem. Bull. 4(9), 442 (2015)

    Google Scholar 

  17. Sharma, D., Panchariya, P., Purohit, P., Sharma, P.K.: Oxidation of aliphatic aldehydes by imidazolium fluorochromate (IFC): A kinetic and mechanistic study. Oxid Commun. 35(4), 821 (2012)

    Google Scholar 

  18. Panwar, S., Pohani, S., Swami, P., Vyas, S., Sharma, P.K.: Kinetics and mechanism of the oxidation of aliphatic aldehydes quinolinium chlorochromate. Eur. Chem. Bull. 2(10), 904 (2013)

    Google Scholar 

  19. Swami, P., Malani, N., Agarawal, S., Sharma, P.K.: Oxidation of aliphatic aldehydes by tetraethylammonium chlorochromate: A kinetic study. Prog. React. Kinet. Mech. 35, 309 (2010)

    Article  Google Scholar 

  20. Sharma, P.K.: Structure-reactivity correlation in the oxidation of substituted benzaldehydes by 2, 2′-bipyridinium chlorochromate. J. Indian Chem. Soc. 85, 1281 (2008)

    Google Scholar 

  21. Choudhary, A., Malani, N., Agarwal, S., Sharma, M., Sharma, V.: Correlation analysis of reactivity in the oxidation of substituted benzaldehydes by morpholinium chlorochromate. J. Indian Chem. Soc. 86, 927 (2009)

    Google Scholar 

  22. Khurana, M., Sharma, P.K., Banerji, K.K.: Kinetics and mechanism of oxidation of aliphatic aldehydes by quinolinium fluorochromate. React. Kinet. Catal. Lett. 67, 341 (1999)

    Article  Google Scholar 

  23. Kumbhat, V., Sharma, P.K., Banerji, K.K.: Kinetics and mechanism of oxidation of aliphatic aldehydes by 2, 2′-bipyridinium chlorochromate. Indian J. Chem. 39A, 1169 (2000)

    Google Scholar 

  24. Saraswat, S., Sharma, V., Banerji, K.K.: Kinetics and mechanism of oxidation of aliphatic aldehydes by pyridinium chlorochromate. Indian J. Chem. 40A, 583 (2001)

    Google Scholar 

  25. Soni, N., Kumbhani, S., Shastri, I., Sharma, V.: Kinetics and mechanism of the oxidation of aliphatic aldehydes by morpholinium chlorochromate. J. Indian Chem. Soc. 85, 857 (2008)

    Google Scholar 

  26. Asghar, B.H., Mansoor, S.S., Hussain, A.M., Malik, V.S., Aswin, K., Sudhan, S.P.N.: Oxidation of aliphatic aldehydes by benzimidazolium fluorochromate in non aqueous medium—A kinetic and mechanistic study. Arab. J. Chem. 10, S2115 (2017)

    Article  Google Scholar 

  27. Chu, T.C., Lin, Y.C.: A fuzzy TOPSIS method for robot selection. Int. J. Adv. Manuf. Technol. 21(4), 284–290 (2003)

    Article  Google Scholar 

  28. Wang, Y.M., Elhag, T.M.: Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst. Appl. 31(2), 309–319 (2006)

    Article  Google Scholar 

  29. Ashtiani, B., Haghighirad, F., Makui, A., Montazer, G.A.: Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Appl. Soft Comput. 9(2), 457–461 (2009)

    Article  Google Scholar 

  30. Şengül, U., Eren, M., Shiraz, S.E., Gezder, V., Şengül, A.B.: Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 75, 617–625 (2015)

    Article  Google Scholar 

  31. Gündoğdu, F.K., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 36(1), 337–352 (2019)

    Article  MATH  Google Scholar 

  32. Rao, A., Kumar, G.: Comparative study of solvent effect by TOPSIS method in the oxidation of acetaldehyde. J. Appl. Chem. 8(4), 1798–1804 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, A., Kumar, G. (2023). The Effect of Solvents on the Oxidation of Acetaldehyde Using TOPSIS Method in a Fuzzy Environment. In: Sahoo, L., Senapati, T., Yager, R.R. (eds) Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain. Studies in Fuzziness and Soft Computing, vol 420. Springer, Singapore. https://doi.org/10.1007/978-981-19-4929-6_13

Download citation

Publish with us

Policies and ethics