Skip to main content

An Intelligent Data Routing Scheme for Multi-UAV Avionics System Based on Integrated Communication Effectiveness

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2022)

Abstract

The rapid development of information technology promotes the transformation and development of future air combat, from mechanization to informatization, intelligence, and multiplatform integration. For the multiplatform avionics system in the unmanned aerial vehicle (UAV)-based network, we aim to address the data routing and sharing issues and propose an integrated communication effectiveness metric. The proposed integrated communication effectiveness is a hierarchical metric consisting of link effectiveness, node effectiveness, and data effectiveness. The link quality, link stability, node honesty, node ability, and data value are concurrently taken into account. We give the normal mathematical expression for the integrated communication effectiveness. We propose a hop-by-hop routing scheme based on a Q-learning algorithm considering the proposed effectiveness metric. Simulation results demonstrate that the proposed scheme is able to find the most efficient routing in the UAV network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, W., Yuan, X., Wang, J., Li, Q., Chen, L., Mu, D.: End-to-end data delivery reliability model for estimating and optimizing the link quality of industrial WSNs. IEEE Trans. Autom. Sci. Eng. 15(3), 1127–1137 (2018)

    Article  Google Scholar 

  2. Wen, J., Dargie, W.: Evaluation of the quality of aerial links in low-power wireless sensor networks. IEEE Sens. J. 21(12), 13924–13934 (2021)

    Article  Google Scholar 

  3. Dabiri, M.T., Rezaee, M., Yazdanian, V., Maham, B., Saad, W., Hong, C.S.: 3D channel characterization and performance analysis of UAV-assisted millimeter wave links. IEEE Trans. Wireless Commun. 20(1), 110–125 (2021)

    Article  Google Scholar 

  4. Zhao, Z., et al.: Exploiting link diversity for performance-aware and repeatable simulation in low-power wireless networks. IEEE/ACM Trans. Networking 28(6), 2545–2558 (2020)

    Article  Google Scholar 

  5. Xu, C., Xiong, Z., Han, Z., Zhao, G., Yu, S.: Link Reliability-based adaptive routing for multilevel vehicular networks. IEEE Trans. Veh. Technol. 69(10), 11771–11785 (2020)

    Article  Google Scholar 

  6. Xia, H., Zhang, S., Li, Y., Pan, Z., Peng, X., Cheng, X.: An attack-resistant trust inference model for securing routing in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 68(7), 7108–7120 (2019)

    Article  Google Scholar 

  7. Li, F., Guo, Z., Zhang, C., Li, W., Wang, Y.: ATM: an active-detection trust mechanism for VANETs based on blockchain. IEEE Trans. Veh. Technol. 70(5), 4011–4021 (2021)

    Article  Google Scholar 

  8. Huang, M., Liu, A., Xiong, N.N., Wu, J.: A UAV-assisted ubiquitous trust communication system in 5G and beyond networks. IEEE J. Sel. Areas Commun. 39(11), 3444–3458 (2021)

    Article  Google Scholar 

  9. Du, J., Han, G., Lin, C., Martínez-García, M.: LTrust: an adaptive trust model based on LSTM for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. (2022). https://doi.org/10.1109/TWC.2022.3157621

  10. Du, J., Han, G., Lin, C., Martínez-García, M.: ITrust: an anomaly- resilient trust model based on isolation forest for underwater acoustic sensor networks. IEEE Trans. Mob. Comput. 21(5), 1684–1696 (2022)

    Article  Google Scholar 

  11. Cui, S., Wang, H., Xie, Y., et al.: Intelligent storage system of machine learning model based on task similarity. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) International Conference of Pioneering Computer Scientists, Engineers and Educators, vol. 1451, pp. 119–124. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_9

  12. Shu, Y., Ma, Z., Liu, H., et al.: An analysis and validation toolkit to support the undergraduate course of computer organization and architecture. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) International Conference of Pioneering Computer Scientists, Engineers and Educators, vol. 1452, pp. 465–474. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5943-0_38

  13. Wu, Y., Li, Z., Li, Y., et al.: Teaching reform and research of data structure course based on BOPPPS model and rain classroom. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2021, pp. 410–418. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5943-0_33

  14. Sheng, R., Wang, Y., Huang, L.: Intelligent service robot for high-speed railway passengers. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) International Conference of Pioneering Computer Scientists, Engineers and Educators, vol. 1452, pp. 263–271. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5943-0_21

  15. Zhao, T., Jin, L., Jia, Y.: Prediction of enzyme species by graph neural network. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) International Conference of Pioneering Computer Scientists, Engineers and Educators, pp. 283–292. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5943-0_23

  16. Lin, C., Han, G., Shah, S.B.H., et al.: Integrating mobile edge computing into unmanned aerial vehicle networks: an SDN-enabled architecture. IEEE Internet Things Mag. 4(4), 18–23 (2021)

    Article  Google Scholar 

  17. Qin, Z., Liu, Z., Han, G., et al.: Distributed UAV-BSs trajectory optimization for user-level fair communication service with multi-agent deep reinforcement learning. IEEE Trans. Veh. Technol. 70(12), 12290–12301 (2021)

    Article  Google Scholar 

  18. Liu, X., Lai, B., Gou, L., et al.: Joint resource optimization for UAV-enabled multichannel Internet of Things based on intelligent fog computing. IEEE Trans. Netw. Sci. Eng. 8(4), 2814–2824 (2020)

    Article  Google Scholar 

  19. Jiang, J., Han, G.: Routing protocols for unmanned aerial vehicles. IEEE Commun. Mag. 56(1), 58–63 (2018)

    Article  Google Scholar 

  20. Lin, C., Han, G., Qi, X., et al.: Energy-optimal data collection for unmanned aerial vehicle-aided industrial wireless sensor network-based agricultural monitoring system: a clustering compressed sampling approach. IEEE Trans. Industr. Inf. 17(6), 4411–4420 (2020)

    Article  Google Scholar 

  21. Chen, X., Bi, Y., Han, G., et al.: Distributed computation offloading and trajectory optimization in Multi-UAV-enabled edge computing. IEEE Internet Things J. 1 (2022)

    Google Scholar 

  22. Osco, L.P., Junior, J.M., Ramos, A.P.M., et al.: A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 102, 102456 (2021)

    Google Scholar 

  23. Pham, Q.V., Zeng, M., Ruby, R., et al.: UAV communications for sustainable federated learning. IEEE Trans. Veh. Technol. 70(4), 3944–3948 (2021)

    Article  Google Scholar 

  24. Wang, Z., Zhou, W., Chen, L., et al.: An adaptive deep learning-based UAV receiver design for coded MIMO with correlated noise. Phys. Commun. 47, 101365 (2021)

    Article  Google Scholar 

  25. Tang, S., Zhou, W., Chen, L., et al.: Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks. Phys. Commun. 47, 101381 (2021)

    Article  Google Scholar 

  26. Fu, S., Tang, Y., Wu, Y., et al.: Energy-efficient UAV-enabled data collection via wireless charging: a reinforcement learning approach. IEEE Internet Things J. 8(12), 10209–10219 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Y. et al. (2022). An Intelligent Data Routing Scheme for Multi-UAV Avionics System Based on Integrated Communication Effectiveness. In: Wang, Y., Zhu, G., Han, Q., Zhang, L., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1629. Springer, Singapore. https://doi.org/10.1007/978-981-19-5209-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5209-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5208-1

  • Online ISBN: 978-981-19-5209-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics