Skip to main content

KPH: A Novel Blockchain Privacy Preserving Scheme Based on Paillier and FO Commitment

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1629))

  • 774 Accesses

Abstract

Blockchain is a shared database with excellent characteristics, such as high decentralization and traceability. However, data leakage is still a major problem for blockchain transactions. To address this issue, this work introduces KPH (Paillier Homomorphic Encryption with Variable k), a privacy protection strategy that updates the transaction amount using the enhanced Paillier semihomomorphic encryption algorithm and verifies the transaction using the FO commitment. Unlike the typical Paillier algorithm, the KPH scheme’s Paillier algorithm includes a variable k and combines the L function and the Chinese remainder theorem to reduce the time complexity of the algorithm from O\(({|n|}^{2+e})\) to O\(({log}n)\), making the decryption process more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naiquan, L.: Overview of privacy data security based on blockchain. Netw. Secur. Technol. Appl. 01, 19–21 (2022)

    Google Scholar 

  2. Zongyu, L., Xiaolin, G., Yingjie, G., Xuesong, L., Xuejun, Z.: Homomorphic encryption technology and its application in cloud computing privacy protection. J. Softw. 29(07), 1830–1851 (2018)

    Google Scholar 

  3. Maxwell, G.: CoinJoin: bitcoin privacy for the real world. Post on Bitcoin Forum (2013)

    Google Scholar 

  4. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for Obtaining Digital Signatures and Public Key Cryptosystems, pp. 217–239. Routledge (2019)

    Google Scholar 

  5. Todd, P.: Stealth addresses. Post on Bitcoin development mailing list (2014). https://www.mail-archive.com/bitcoindevelopment@lists.sourceforge.net/msg03613.html

    Google Scholar 

  6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  7. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  8. Koundinya, A.K., Gautham, S.K.: Two-layer encryption based on paillier and elgamal cryptosystem for privacy violation. Int. J. Wirel. Microw. Technol. (IJWMT), 11(3), 9–15 (2021)

    Google Scholar 

  9. Tsai, C.S., Zhang, Y.S., Weng, C.Y.: Separable reversible data hiding in encrypted images based on Paillier cryptosystem. Multimed Tools Appl. 81, 18807–18827 (2022)

    Article  Google Scholar 

  10. Fang, W., Zamani, M., Chen, Z.: Secure and privacy preserving consensus for second-order systems based on paillier encryption. Syst. Control Lett. 148, 104869 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ma, J., Naas, S., Sigg, S., Lyu, X.: Privacy‐preserving federated learning based on multi‐key homomorphic encryption. Int. J. Intell. Syst. (2022)

    Google Scholar 

  12. Bernal Bernabe, J., Canovas, J.L., Hernandez-Ramos, J.L., Torres Moreno, R. Skarmeta, A.: Privacy-preserving solutions for blockchain review and challenges. IEEE Access 7, 164908–164940 (2019)

    Google Scholar 

  13. Zhu, S., Wang, H.: Smart grid data aggregation and incentive scheme based on Paillier algorithm. Comput. Eng. 11, 166–174 (2021)

    Google Scholar 

  14. Ghadamyari, M., Samet, S.: Privacy-preserving statistical analysis of health data using paillier homomorphic encryption and permissioned blockchain. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5474–5479. IEEE (2019)

    Google Scholar 

  15. Jianzhen, L.: Applied research on privacy protection of blockchain transactions based on paillier homomorphic encryption, Master’s thesis, Southeast University. (2019)

    Google Scholar 

  16. Yan, X., Wu, Q., Sun, Y.: A homomorphic encryption and privacy protection method based on blockchain and edge computing. Wirel. Commun. Mob. Comput. (2020)

    Google Scholar 

  17. Diao, Y., Ye, A., Zhang, J., Deng, H., Zhang, Q., Cheng, B.: A dual privacy protection method based on group signature and homomorphic encryption for alliance blockchain. J. Comput. Res. Dev. 01, 172–181 (2022)

    Google Scholar 

  18. Yao, L., Shuai, X.: Accelerate the paillier cryptosystem in CryptDB by Chinese remainder theorem. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 74–77. IEEE (2018)

    Google Scholar 

  19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

  20. The wikipedia website. https://en.wikipedia.org/wiki/Chineseremaindertheorem

  21. Ogunseyi, T.B., Bo, T.: Fast decryption algorithm for paillier homomorphic cryptosystem. In: 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), pp. 803–806. IEEE (2020)

    Google Scholar 

  22. Wu, Q., Zhang, J., Wang, Y.: Simple proof that a commitment value is in a specific interval. Electron. J. 07, 1071–1073 (2004)

    Google Scholar 

  23. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surv. (CSUR) 52(3), 1–34 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This research is funded by the Emerging Interdisciplinary Project of CUFE, the National Natural Science Foundation of China (No. 61906220) and Ministry of Education of Humanities and Social Science project (No. 19YJCZH178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wang, M., Zhu, J., Wang, X. (2022). KPH: A Novel Blockchain Privacy Preserving Scheme Based on Paillier and FO Commitment. In: Wang, Y., Zhu, G., Han, Q., Zhang, L., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1629. Springer, Singapore. https://doi.org/10.1007/978-981-19-5209-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5209-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5208-1

  • Online ISBN: 978-981-19-5209-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics