Skip to main content

Many-Objective Artificial Bee Colony Algorithm Based on Decomposition and Dimension Learning

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1638))

Included in the following conference series:

Abstract

Artificial bee colony (ABC) has shown strong global search abilities on single-objective problems (SOPs). In order to stretch ABC to tackle many-objective optimization problems (MaOPs), a novel many-objective ABC algorithm on account of decomposition and dimension learning (called MaOABC-DDL) is proposed in this paper. By the decomposition, a MaOP is transformed to several sub-problems, which are simultaneously optimized by an improved ABC algorithm. A novel fitness function is the adoption of the ranking value of each objective. Then, an elite set is constructed according to the fitness value. Built on the elite set, a revised search strategy is designed. In addition, dimension learning is employed to amplify the search capability and Speed up convergence. To verify the performance of MaOABC-DDL, the DTLZ benchmark set is measured in the trials. The outcome shows that the proposed MaOABC-DDL obtains better results than the other five compared algorithms in two performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2020)

    Article  Google Scholar 

  2. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  3. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  4. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Tran. Evol. Comput. 11(6), 712–731 (2007)

    Google Scholar 

  5. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Google Scholar 

  6. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 203–208 (2009)

    Google Scholar 

  7. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for realparameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  8. Karaboga, D., Gorkemli, B.: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl. Soft Comput. 23(1), 227–238 (2014)

    Article  Google Scholar 

  9. Wang, H., Wang, W.J., Xiao, S.Y., Cui, Z.H., Xu, M.Y., Zhou, X.Y.: Improving ar tifificial Bee colony algorithm using a new neighborhood selection mechanism. Inf. Sci. 527, 227–240 (2020)

    Article  Google Scholar 

  10. Xiao, S., Wang, H., Wang, W., Huang, Z., Zhou, X., Xu, M.: Artificial bee colony algorithm based on adaptive neighborhood search and Gaussian perturbation. Appl. Soft Comput. 100, 106955 (2021)

    Article  Google Scholar 

  11. Ye, T.Y., Zeng, T., Zhang, L.Q., Xu, M., Wang, H., Hu, M.: Artificial bee colony algorithm with an adaptive search manner. In: Neural Computing for Advanced Applications, pp. 486–497. Springer Singapore, Singapore (2021). https://doi.org/10.1007/s00521-022-06981-4

  12. Zeng, T., Ye, T., Zhang, L., Xu, M., Wang, H., Hu, M.: Population diversity guided dimension perturbation for artificial bee colony algorithm. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 473–485. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_34

    Chapter  Google Scholar 

  13. Zeng, T., et al.: Artificial bee colony based on adaptive search strategy and random grouping mechanism. Expert Syst. Appl. 192, 116332 (2022)

    Article  Google Scholar 

  14. Ye, T.Y., et al.: Artificial bee colony algorithm with efficient search strategy based on random neighborhood structure. Knowl.-Based Syst. 241, 108306 (2022)

    Article  Google Scholar 

  15. Ye, T.Y., Wang, H., Wang, W.J., Zeng, T., Zhang, L.Q., Huang, Z.K.: Artificial bee colony algorithm with an adaptive search manner and dimension perturbation. Neural Computing and Applications (2022)

    Google Scholar 

  16. Zou, W., Zhu, Y., Chen, H., Zhang, B.: Solving multiobjective optimization problems using artificial bee colony algorithm. Discrete Dyn. Nature Soc. 11(2), 1–37 (2011)

    Google Scholar 

  17. Akbari, R., Hedayatzadeh, R., Ziarati, K., Hassanizadeh, B.: A multi-objective artificial bee colony algorithm. Swarm Evol. Comput. 2, 39–52 (2012)

    Google Scholar 

  18. B. Akay.: Synchronous and asynchronous Pareto-based multi-objective artificial bee colony algorithms. J. Global Opt. 57(2), 415–445 (2013)

    Google Scholar 

  19. Xiang, Y., Zhou, Y., Liu, H.: An elitism based multi-objective artificial bee colony algorithm. Europ. J. Oper. Res. 245(1), 168–193 (2015)

    Google Scholar 

  20. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    Google Scholar 

  21. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016)

    Google Scholar 

  22. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (Nos. 20212ACB212004, 20212BAB202023, and 20212BAB202022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Wang, H., Wei, Z., Wu, J., Liu, J., Zhang, H. (2022). Many-Objective Artificial Bee Colony Algorithm Based on Decomposition and Dimension Learning. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1638. Springer, Singapore. https://doi.org/10.1007/978-981-19-6135-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6135-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6134-2

  • Online ISBN: 978-981-19-6135-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics