Skip to main content

Many-Objective Evolutionary Algorithm Based on Dominance and Objective Space Decomposition

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1638))

Included in the following conference series:

Abstract

Many-objective optimization problems (MaOPs) refer to multi-objective optimization problems (MOPs) containing large number of objectives, typically more than four. The complexity of MOPs grows rapidly in size with the number of objectives, making the problem quickly intractable. Though various many-objective evolutionary algorithms (MaOEAs) have been proposed to solve MaOPs, it is difficult to balance the convergence and population diversity. In order to address the above issues, this paper proposes a many-objective evolutionary algorithm based on dominance and objective space decomposition (called DDMaOEA), in which fast non-dominated sorting cooperates with objective space decomposition to maintain the population diversity and convergence during the environment selection. To verify the performance of DDMaOEA, 13 benchmark problems with 3, 5, 8, and 10 objectives are used. Experimental results show that DDMaOEA achieves better performance when compared with five other Many-objective optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  2. Wanger, A., Mills, K., Nelson, P.W., Rex, J.H.: Comparison of Etest and national committee for clinical laboratory standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother. 39(11), 2520–2522 (1995)

    Article  Google Scholar 

  3. Zhan, Z.H., Li, J.J., Cao, J.N., Zhang, J., Chung, H.H., Shi, Y.H.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)

    Google Scholar 

  4. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2014)

    Article  Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  8. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. In: IEEE Transactions on Evolutionary Computation, 13(2), 284–302 (2009)

    Google Scholar 

  10. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 203–208 (2009)

    Google Scholar 

  11. Chen, B., Zeng, W., Lin, Y.: A new local search-based multiobjective optimization algorithm. IEEE Trans. Evol. Comput. 19(1), 50–73 (2015)

    Article  Google Scholar 

  12. Wq, A., Jz, A., Gw, B.: Evolutionary many-Objective algorithm based on fractional dominance relation and improved objective space decomposition strategy - ScienceDirect. Swarm and Evolutionary Computation. 60 (2020)

    Google Scholar 

  13. Reed, P.M., Hadka, D., Herman, J.D.: Evolutionary multi-objective optimization in water resources: The past, present, and future. In: Advances in Water Resources. 51(JAN.), 438–456 (2013)

    Google Scholar 

  14. Liu, H., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  15. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Systems. 9(3), 193–212 (1995)

    MathSciNet  Google Scholar 

  16. Zeng, T., et al.: Artificial bee colony based on adaptive search strategy and random grouping mechanism. Expert Syst. Appl. 192, 116332 (2022)

    Article  Google Scholar 

  17. Lin, Q., Li, J., Du, Z., Chen, J., Ming, Z.: A novel multi-objective particle swarm optimization with multiple search strategies. Europ. J. Oper. Res. 247(3), 732–744 (2015)

    Article  MathSciNet  Google Scholar 

  18. Dai, C., Wang, Y., Ye, M.: A new multi-objective particle swarm optimization algorithm based on decomposition. Inf. Sci. 325, 541–557 (2015)

    Article  Google Scholar 

  19. Pan, L., Xu, W., Li, L., He, C., Cheng, R.: Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evol. Comput. 60, 100759 (2021)

    Article  Google Scholar 

  20. Coello, C.A., Lechuga, M.S.: MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation. 1051–1056 (2002)

    Google Scholar 

  21. Tian, Y., Cheng, R., Zhang, X.Y., Jin, Y.C.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  22. Pierro, F.D., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 11(1), 17–45 (2007)

    Article  Google Scholar 

  23. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter Control Evol. Algorithms. Evol. Comput. IEEE Trans. 19(2), 167–187 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (Nos. 20212ACB21 2004, 20212BAB202023, and 20212BAB202022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Z. et al. (2022). Many-Objective Evolutionary Algorithm Based on Dominance and Objective Space Decomposition. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1638. Springer, Singapore. https://doi.org/10.1007/978-981-19-6135-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6135-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6134-2

  • Online ISBN: 978-981-19-6135-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics