Skip to main content

An Ensemble Deep Learning Model Based on Transformers for Long Sequence Time-Series Forecasting

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1638))

Included in the following conference series:

Abstract

Accurate demand forecasts are commonly needed in real life to deploy future schedules of economic activities, such as merchandise sales and electricity consumption predictions. Transformer network has been demonstrated to have potential for time series forecasting in recent studies, however, practical tasks generally require long sequence forecasting outputs with limited length of inputs, which leads to high time complexity and large memory consumption. In this research, we propose a stacking ensemble model for increasing long sequence time-series forecasting accuracy which is based on three Transformer networks. The base learners include Autoformer, Informer and Reformer, which have different improvements on Transformer that enable our approach to improve forecast performance. Then, the results from base learners are applied to train the meta learner (MLP), and finally the trained meta-learner is applied to predict future demand. Experiments on two overt datasets reveal that our proposed ensemble Transformer model possesses great prediction accuracy while requires minor amount of computation. This approach may provide a fresh solution to the demand forecasting domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendaoud, N.M.M., Farah, N.: Using deep learning for short-term load forecasting. Neural Comput. Appl. 32(18), 15029–15041 (2020). https://doi.org/10.1007/s00521-020-04856-0

    Article  Google Scholar 

  2. Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need for video frame interpolation. In: AAAI, pp. 10663–10671. AAAI Press (2020)

    Google Scholar 

  3. Feng, Y., Wang, S.: A forecast for bicycle rental demand based on random forests and multiple linear regression. In: ICIS, pp. 101–105. IEEE Computer Society (2017)

    Google Scholar 

  4. Huang, Y., Xu, C., Ji, M., Xiang, W., He, D.: Medical service demand forecasting using a hybrid model based on ARIMA and self-adaptive filtering method. BMC Medical Informatics Decis. Mak. 20(1), 237 (2020)

    Google Scholar 

  5. Jin, Y., Han, D.K., Ko, H.: Trseg: Transformer for semantic segmentation. Pattern Recognit. Lett. 148, 29–35 (2021)

    Article  Google Scholar 

  6. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. In: ICLR, OpenReview.net (2020)

    Google Scholar 

  7. Li, R., Chen, X., Balezentis, T., Streimikiene, D., Niu, Z.: Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Comput. Appl. 33(1), 301–320 (2020). https://doi.org/10.1007/s00521-020-04996-3

    Article  Google Scholar 

  8. Lingelbach, K., Lingelbach, Y., Otte, S., Bui, M., Künzell, T., Peissner, M.: Demand forecasting using ensemble learning for effective scheduling of logistic orders. In: Ahram, T.Z., Karwowski, W., Kalra, J. (eds.) AHFE 2021. LNNS, vol. 271, pp. 313–321. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80624-8_39

    Chapter  Google Scholar 

  9. Liu, B., Tang, X., Cheng, J., Shi, P.: Traffic flow combination forecasting method based on improved LSTM and ARIMA. Int. J. Embed. Syst. 12(1), 22–30 (2020)

    Article  Google Scholar 

  10. Liu, S., Ji, H., Wang, M.C.: Nonpooling convolutional neural network forecasting for seasonal time series with trends. IEEE Trans. Neural Networks Learn. Syst. 31(8), 2879–2888 (2020)

    Article  Google Scholar 

  11. Mallick, A., Singh, S.N., Mohapatra, A.: Data driven day-ahead electrical load forecasting through repeated wavelet transform assisted SVM model. Appl. Soft Comput. 111, 107730 (2021)

    Article  Google Scholar 

  12. Martínez, F., Frías, M.P., Pérez-Godoy, M.D., Rivera, A.J.: A methodology for applying k-nearest neighbor to time series forecasting. Artif. Intell. Rev. 52(3), 2019–2037 (2019)

    Article  Google Scholar 

  13. Masum, S., Liu, Y., Chiverton, J.: Multi-step time series forecasting of electric load using machine learning models. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 148–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_15

    Chapter  Google Scholar 

  14. Parmar, N., et al.: Image transformer. In: ICML. Proceedings of Machine Learning Research, vol. 80, pp. 4052–4061. PMLR (2018)

    Google Scholar 

  15. Ponnoprat, D.: Short-term daily precipitation forecasting with seasonally-integrated autoencoder. Appl. Soft Comput. 102, 107083 (2021)

    Article  Google Scholar 

  16. Qiu, X., Ren, Y., Suganthan, P.N., Amaratunga, G.A.J.: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 54, 246–255 (2017)

    Article  Google Scholar 

  17. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparison of ARIMA and LSTM in forecasting time series. In: ICMLA, pp. 1394–1401. IEEE (2018)

    Google Scholar 

  18. Sun, L., Xing, X., Zhou, Y., Hu, X.: Demand forecasting for petrol products in gas stations using clustering and decision tree. J. Adv. Comput. Intell. Intell. Informatics 22(3), 387–393 (2018)

    Article  Google Scholar 

  19. Svetunkov, I., Boylan, J.E.: State-space ARIMA for supply-chain forecasting. Int. J. Prod. Res. 58(3), 818–827 (2020)

    Article  Google Scholar 

  20. Teng, F., Teng, J., Qiao, L., Du, S., Li, T.: A multi-step forecasting model of online car-hailing demand. Inf. Sci. 587, 572–586 (2022)

    Article  Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  22. Verma, M.: Revisiting linformer with a modified self-attention with linear complexity. CoRR abs/2101.10277 (2021)

    Google Scholar 

  23. Wang, Z., He, L., Zhao, Y.: Forecasting the seasonal natural gas consumption in the US using a gray model with dummy variables. Appl. Soft Comput. 113(Part), 108002 (2021)

    Google Scholar 

  24. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. In: NeurIPS, pp. 22419–22430 (2021)

    Google Scholar 

  25. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: AAAI, pp. 11106–11115. AAAI Press (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, J., Cao, J., Chen, Y. (2022). An Ensemble Deep Learning Model Based on Transformers for Long Sequence Time-Series Forecasting. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1638. Springer, Singapore. https://doi.org/10.1007/978-981-19-6135-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6135-9_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6134-2

  • Online ISBN: 978-981-19-6135-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics