Skip to main content

An Improved Partition Filter Network for Entity-Relation Joint Extraction

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Included in the following conference series:

  • 692 Accesses

Abstract

The purpose of a joint entity-relation extraction task is to extract entity-relation triples from unstructured text to assist text analysis, knowledge graph construction, etc. The existing sequence-to-sequence or sequence-to-non-sequence models treat the joint extraction task as a triple generation task, sharing the feature space of entity and relation extraction in the same structure. However, fusing the information of both subtasks may cause the problem of feature conflicts and thus decrease model performance. In order to enable each extraction subtask has its own independent feature space to reduce feature conflicts, this paper proposes a dual-decoder to decode entity extraction subtask and relation extraction subtask separately based on an encoder-to-decoder structure. A Dual-Joint-Input-PFN model is proposed by improving the partition filter network as an interaction to capture connection information between two subtasks. The model consists of two Joint-Input-PFNs layers, and each layer accepts two inputs simultaneously and filters the other input according to one of them. The experiments are based on standard datasets WebNLG and NYT, and the effectiveness of the proposed model is verified by comparing with the state-of-the-art baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Chan, Y.S., Roth, D.: Exploiting syntactico-semantic structures for relation extraction. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 551–560 (2011)

    Google Scholar 

  3. Wang, J., Lu, W.: Two are better than one: joint entity and relation extraction with table-sequence encoders. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1706–1721 (2020)

    Google Scholar 

  4. Miwa, M., Sasaki, Y.: Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1858–1869 (2014)

    Google Scholar 

  5. Gupta, P., Schütze, H., Andrassy, B.: Table filling multi-task recurrent neural network for joint entity and relation extraction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2537–2547 (2016)

    Google Scholar 

  6. Ma, Y., Hiraoka, T., Okazaki, N.: Named entity recognition and relation extraction using enhanced table filling by contextualized representations. arXiv preprint arXiv:2010.07522 (2020)

  7. Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging framework for relational triple extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1476–1488 (2020)

    Google Scholar 

  8. Yu, B., et al.: Joint extraction of entities and relations based on a novel decomposition strategy. In: ECAI 2020, pp. 2282–2289 (2020)

    Google Scholar 

  9. Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and relations based on a novel tagging scheme. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1227–1236 (2017)

    Google Scholar 

  10. Luo, X., Liu, W., Ma, M., Wang, P.: A bidirectional tree tagging scheme for jointly extracting overlapping entities and relations. arXiv e-prints, arXiv-2008 (2020)

    Google Scholar 

  11. Wang, Y., Yu, B., Zhang, Y., Liu, T., Zhu, H., Sun, L.: TPLinker: single-stage joint extraction of entities and relations through token pair linking. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1572–1582 (2020)

    Google Scholar 

  12. Nayak, T., Ng, H.T.: Effective modeling of encoder-decoder architecture for joint entity and relation extraction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8528–8535 (2020)

    Google Scholar 

  13. Zhang, R.H., et al.: Minimize exposure bias of Seq2Seq models in joint entity and relation extraction. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 236–246 (2020)

    Google Scholar 

  14. Sui, D., Chen, Y., Liu, K., Zhao, J., Zeng, X., Liu, S.: Joint entity and relation extraction with set prediction networks. arXiv preprint arXiv:2011.01675 (2020)

  15. Zhong, Z., Chen, D.: A frustratingly easy approach for entity and relation extraction. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 50–61 (2021)

    Google Scholar 

  16. Yan, Z., Zhang, C., Fu, J., Zhang, Q., Wei, Z.: A partition filter network for joint entity and relation extraction. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 185–197 (2021)

    Google Scholar 

  17. Zeng, X., He, S., Zeng, D., Liu, K., Liu, S., Zhao, J.: Learning the extraction order of multiple relational facts in a sentence with reinforcement learning. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 367–377 (2019)

    Google Scholar 

  18. Sun, K., Zhang, R., Mensah, S., Mao, Y., Liu, X.: Recurrent interaction network for jointly extracting entities and classifying relations. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3722–3732 (2020)

    Google Scholar 

  19. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  20. Fu, T.J., Li, P.H., Ma, W.Y.: GraphRel: modeling text as relational graphs for joint entity and relation extraction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1409–1418 (2019)

    Google Scholar 

  21. Shen, Y., Tan, S., Sordoni, A., Courville, A.: Ordered neurons: integrating tree structures into recurrent neural networks. arXiv preprint arXiv:1810.09536 (2018)

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Gu, J., Bradbury, J., Xiong, C., Li, V.O., Socher, R.: Non-autoregressive neural machine translation. arXiv preprint arXiv:1711.02281 (2017)

  24. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training corpora for NLG micro-planners. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 179–188 (2017)

    Google Scholar 

  25. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10

    Chapter  Google Scholar 

  26. Zeng, X., Zeng, D., He, S., Liu, K., Zhao, J.: Extracting relational facts by an end-to-end neural model with copy mechanism. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 506–514 (2018)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

Download references

Acknowledgements

The work is supported by grants from National Natural Science Foundation of China (No. 61871141), Natural Science Foundation of Guangdong Province (2021A1515011339), and Collaborative Innovation Team of Guangzhou University of Traditional Chinese Medicine (No. 2021XK08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyong Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Liang, L., Zhu, X., Weng, H., Yan, J., Hao, T. (2022). An Improved Partition Filter Network for Entity-Relation Joint Extraction. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics