Skip to main content

Fast Dynamic Response Based on Active Disturbance Rejection Control of Dual Active Bridge DC-DC Converter

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Abstract

In view of the dynamic characteristics for dual active bridge (DAB) converters in single phase shift control, a control method based on active disturbance rejection control (ADRC) control with output current and input voltage feed-forward is proposed. The basic structure and control method of the linear active disturbance rejection control (LADRC) are introduced and analysis of the dependence of the method on the inductance parameters and the stability of the control system in this paper. Finally, the proposed control method and PI control are compared and validated in a simulation-based platform. Experiments show that the converter responds three times faster than conventional PI control during sudden load changes and is insensitive to inductor parameter deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, J., Wang, Y., Wang, H., Wei, M., Zhou, Y., Zhang, Y.: Modulation strategy for improving the voltage gain of the dual-active-bridge converter. IET Power Electron. 13(8), 1630–1638 (2020). https://doi.org/10.1049/iet-pel.2019.1250

    Article  Google Scholar 

  2. Zhan, H., et al.: Model predictive control of input-series output-parallel dual active bridge converters based dc transformer. IET Power Electron. 13(6), 1144–1152 (2020). https://doi.org/10.1049/iet-pel.2019.1061

    Article  Google Scholar 

  3. Hou, N., Song, W., Wu, M.: Minimum-current-stress scheme of dual active bridge dccdc converter with unified phase-shift control. IEEE Trans. Power Electron. 31(12), 8552–8561 (2016). https://doi.org/10.1109/TPEL.2016.2521410

    Article  Google Scholar 

  4. Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid. IEEE Trans. Power Electron. 27(11), 4667–4680 (2012). https://doi.org/10.1109/TPEL.2011.2180928

    Article  Google Scholar 

  5. Hou, N., Li, Y.: A direct current control scheme with compensation operation and circuit-parameter estimation for full-bridge dccdc converter. IEEE Trans. Power Electron. 36(1), 1130–1142 (2021). https://doi.org/10.1109/TPEL.2020.3002737

    Article  Google Scholar 

  6. Bai, H., Mi, C., Wang, C., Gargies, S.: The dynamic model and hybrid phase-shift control of a dual-active-bridge converter, pp. 2840–2845 (2008). https://doi.org/10.1109/IECON.2008.4758409

  7. Bai, H., Nie, Z., Mi, C.C.: Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dccdc converters. IEEE Trans. Power Electron. 25(6), 1444–1449 (2010). https://doi.org/10.1109/TPEL.2009.2039648

    Article  Google Scholar 

  8. Guo, L.: Implementation of digital pid controllers for DC-DC converters using digital signal processors, pp. 306–311 (2007). https://doi.org/10.1109/EIT.2007.4374445

  9. Kapat, S., Krein, P.T.: Pid controller tuning in a DC-DC converter: A geometric approach for minimum transient recovery time, pp. 1–6 (2010). https://doi.org/10.1109/COMPEL.2010.5562367

  10. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  11. Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design, p. 7 (2006). https://doi.org/10.1109/ACC.2006.1656579

  12. Song, W., Hou, N., Wu, M.: Virtual direct power control scheme of dual active bridge DC-DC converters for fast dynamic response. IEEE Trans. Power Electron. 33(2), 1750–1759 (2018). https://doi.org/10.1109/TPEL.2017.2682982

    Article  Google Scholar 

  13. Gao, Z.: Scaling and bandwidth-parameterization based controller tuning 6, 4989–4996 (2003). https://doi.org/10.1109/ACC.2003.1242516

    Article  Google Scholar 

  14. Cao, Y., Zhao, Q., Ye, Y., Xiong, Y.: Adrc-based current control for grid-tied inverters: design, analysis, and verification. IEEE Trans. Industr. Electron. 67(10), 8428–8437 (2020). https://doi.org/10.1109/TIE.2019.2949513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z. et al. (2022). Fast Dynamic Response Based on Active Disturbance Rejection Control of Dual Active Bridge DC-DC Converter. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics