Abstract
The paper investigates the distributed prescribed performance output formation tracking problem of second-order nonlinear multi-agent systems subject to uncertain disturbances. The formation is realized in a leader-follower structure, which means all followers can form a desired formation pattern while tracking the leader. For accomplishing the formation with prescribed performance, firstly, a time-varying barrier Lyapunov function(TV-BLF) consisting of formation error and performance function is introduced. Then, an adaptive formation protocol is proposed based on the TV-BLF considering both matched and mismatched disturbances. Besides, unknown nonlinear terms in the dynamic models of agents are approximated by adaptive fuzzy logic systems. Further, it is proved rigorously that under the proposed method, the formation errors can satisfy the preset performance and converge to a predefined small region around the origin. At last, a simulation example is performed to validate the performance and the superiority of the developed scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cong, Y.Z., Du, H.B., Jin, Q.C., Zhu, W.W., Lin, X.Z.: Formation control for multiquadrotor aircraft: connectivity preserving and collision avoidance. Int. J. Robust Nonlin. 30(6), 2352–2366 (2020)
Hu, Q.L., Dong, H.Y., Zhang, Y.M., Ma, G.F.: Tracking control of spacecraft formation flying with collision avoidance. Aerosp. Sci. Technol. 42, 353–364 (2015)
He, S.D., Wang, M., Dai, S.L., Luo, F.: Leader-follower formation control of USVs with prescribed performance and collision avoidance. IEEE Trans Ind Inform. 15(1), 572–581 (2019)
Du, H.B., Zhu, W.W., Wen, G.H., Duan, Z.S., Lu, J.H.: Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE T Cybern. 49(1), 342–353 (2019)
Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)
Kartal, Y., Subbarao, K., Gans, N.R., Dogan, A., Lewis, F.: Distributed backstepping based control of multiple UAV formation flight subject to time delays. IET Contr. Theory Appl. 14(12), 1628–1638 (2020)
Cheng, Z.T., Wu, H., Wang, B., Liu, L., Wang, Y.J.: Fixed-time convergent guidance law with impact angle control. Complexity 2020, 1–9 (2020)
Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)
Bechlioulis, C.P., Rovithakis, G.A.: Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance. IEEE Trans. Autom. Control 62(1), 123–134 (2017)
Wei, C.S., Luo, J.J., Yin, Z.Y., Yuan, J.P.: Leader-following consensus of second-order multi-agent systems with arbitrarily appointed-time prescribed performance. IET Contr. Theory Appl. 12(16), 2276–2286 (2018)
Han, S.I.: Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Contr. Theory Appl. 12(2), 282–290 (2018)
Abdoli, H.M.H., Najafi, M., Izadi, I., Sheikholeslam, F.: Sliding mode approach for formation control of multi-agent systems with unknown nonlinear interactions. ISA Trans. 80, 65–72 (2018)
Khoo, S.Y., Xie, L.H., Man, Z.H.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE-ASME Trans. Mechatron. 14(2), 219–228 (2009)
Liu, Y.A., Wang, Q., Dong, C.Y., Ran, M.P.: Time-varying formation control for unmanned aerial vehicles with external disturbances. Trans. Inst. Meas. Control. 41(13), 3777–3786 (2019)
Zhang, X.H., Gao, J.L., Zhang, W.F., Zeng, T., Ye, L.P.: Distributed formation control for multiple quadrotor based on multi-agent theory and disturbance observer. Math. Probl. Eng. 2019, 1–11 (2019)
Cui, Y., Liu, X., Deng, X.: Composite adaptive fuzzy decentralized tracking control for pure-feedback interconnected large-scale nonlinear systems. Neural Comput. Appl. 33(14), 8735–8751 (2021). https://doi.org/10.1007/s00521-020-05622-y
Tee, K.P., Ren, B.B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)
Yu, J.L., Dong, X.W., Li, Q.D., Ren, Z.: Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6015–6025 (2018)
Wang, W., Li, Y.: Observer-based event-triggered adaptive fuzzy control for leader-following consensus of nonlinear strict-feedback systems. IEEE T Cybern. 51(4), 2131–2141 (2021)
Li, S.H., Wang, X.Y.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49, 3359–3367 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
An, B., Zheng, Z., Wang, B., Fan, H., Liu, L., Wang, Y. (2022). Adaptive Fuzzy Distributed Formation Tracking for Second-order Nonlinear Multi-agent Systems with Prescribed Performance. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_12
Download citation
DOI: https://doi.org/10.1007/978-981-19-6142-7_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-6141-0
Online ISBN: 978-981-19-6142-7
eBook Packages: Computer ScienceComputer Science (R0)