Skip to main content

Backstepping Control of Air-Handling Unit for Indoor Temperature Regulation

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Included in the following conference series:

Abstract

The control of indoor temperature has significant importance to maintain excellent thermal comfort and energy saving. At present, indoor temperature is mainly controlled by Air-Handling Unit (AHU), so a proper indoor temperature control strategy plays an important role in temperature regulation. In this paper, we consider the temperature regulation of a room effected by solar radiation, floor temperature and walls temperature. The nonlinear dynamic model of the room is analyzed, and the state space representation is given. Then, by introducing suitable state transformation, a new system is obtained which is convenient for controller design. Subsequently, the controller is designed for the new system using backstepping technique, and the control objective is realized for indoor temperature regulation. Finally, numerical simulations are provided to illustrate the effectiveness of the backstepping controller, and comparisons are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brozovsky, J., Gustavsen, A., Gaitani, N.: Zero emission neighbourhoods and positive energy districts-a state-of-the-art review. Sustain. Cities Soc. 72, 103013 (2021)

    Article  Google Scholar 

  2. Xu, G., Wang, W.: China’s energy consumption in construction and building sectors: an outlook to 2100. Energy 195, 117045 (2020)

    Article  Google Scholar 

  3. Cetin, K.S., Fathollahzadeh, M.H., Kunwar, N., et al.: Development and validation of an HVAC on/off controller in EnergyPlus for energy simulation of residential and small commercial buildings. Energy Build. 183, 467–483 (2019)

    Article  Google Scholar 

  4. Xu, Y.Q., Peet, Y.T.: Effect of an on/off HVAC control on indoor temperature distribution and cycle variability in a single-floor residential building. Energy Build. 251, 111289 (2021)

    Article  Google Scholar 

  5. Fiducioso, M., et al.: Safe contextual Bayesian optimization for sustainable room temperature PID control tuning. arXiv preprint arXiv:1906.12086 (2019)

  6. Almabrok, A., Psarakis, M., Dounis, A.: Fast tuning of the PID controller in an HVAC system using the big bang-big crunch algorithm and FPGA technology. Algorithms 11(10), 146 (2018)

    Article  Google Scholar 

  7. Ulpiani, G., Borgognoni, M., Romagnoli, A., di Perna, C.: Comparing the performance of on/off, PID and fuzzy controllers applied to the heating system of an energy-efficient building. Energy Build. 116, 1–17 (2016)

    Article  Google Scholar 

  8. Raman, N.S., Devaprasad, K., Chen, B., et al.: Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations. Appl. Energy 279, 115765 (2020)

    Article  Google Scholar 

  9. Merema, B., Breesch, H., Saelens, D.: Comparison of model identification techniques for MPC in all-air HVAC systems in an educational building. In: E3S Web of Conferences, vol. 111, p. 01053. EDP Sciences (2019)

    Google Scholar 

  10. Wang, Z., Hu, G.: Economic MPC of nonlinear systems with nonmonotonic Lyapunov functions and its application to HVAC control. Int. J. Robust Nonlinear Control 28(6), 2513–2527 (2018)

    Article  MathSciNet  Google Scholar 

  11. Serale, G., Fiorentini, M., Capozzoli, A., et al.: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities[J]. Energies 11(3), 631 (2018)

    Article  Google Scholar 

  12. Yao, Y., Shekhar, D.K.: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field. Build. Environ. 200, 107952 (2021)

    Article  Google Scholar 

  13. Moradi, H., Bakhtiari-Nejad, F., Saffar-Avval, M.: Multivariable robust control of an air-handling unit: a comparison between pole-placement and \(H_\infty \) controllers. Energy Convers. Manage. 55, 136–148 (2012)

    Article  Google Scholar 

  14. Khan, M.W., Choudhry, M.A., Zeeshan, M., et al.: Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit. Energy 81, 477–488 (2015)

    Article  Google Scholar 

  15. Setayesh, H., Moradi, H., Alasty, A.: Nonlinear robust control of air handling units to improve the indoor air quality & \(co_2\) concentration: a comparison between \(H_\infty \) & decoupled sliding mode controls. Appl. Thermal Eng. 160, 113958 (2019)

    Article  Google Scholar 

  16. Shah, A., Huang, D., Chen, Y., et al.: Robust sliding mode control of air handling unit for energy efficiency enhancement. Energies 10(11), 1815 (2017)

    Article  Google Scholar 

  17. Elnour, M., Meskin, N.: Multi-zone HVAC control system design using feedback linearization. In: 2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA), pp. 249–254. IEEE (2017)

    Google Scholar 

  18. Biemann, M., Scheller, F., Liu, X., et al.: Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control. Appl. Energy 298, 117164 (2021)

    Article  Google Scholar 

  19. Demirezen, G., Fung, A.S., Deprez, M.: Development and optimization of artificial neural network algorithms for the prediction of building specific local temperature for HVAC control. Int. J. Energy Res. 44(11), 8513–8531 (2020)

    Article  Google Scholar 

  20. Yang, S., Wan, M.P., Chen, W., et al.: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. Appl. Energy 271, 115147 (2020)

    Article  Google Scholar 

  21. Yang, S., Wan, M.P., Chen, W., et al.: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control. Appl. Energy 288, 116648 (2021)

    Article  Google Scholar 

  22. Zou, Z., Yu, X., Ergan, S.: Towards optimal control of air handling units using deep reinforcement learning and recurrent neural network. Build. Environ. 168, 106535 (2020)

    Article  Google Scholar 

  23. Andersen, K.K., Madsen, H., Hansen, L.H.: Modelling the heat dynamics of a building using stochastic differential equations. Energy Build. 31(1), 13–24 (2000)

    Article  Google Scholar 

  24. Tashtoush, B., Molhim, M., Al-Rousan, M.: Dynamic model of an HVAC system for control analysis. Energy 30(10), 1729–1745 (2005)

    Article  Google Scholar 

  25. Fossen, T.I., Strand, J.P.: Tutorial on nonlinear backstepping: applications to ship control. (1999)

    Google Scholar 

  26. Kwan, C., Lewis, F.L.: Robust backstepping control of nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 30(6), 753–766 (2000)

    Article  Google Scholar 

  27. Fang, Y., Fei, J., Yang, Y.: Adaptive backstepping design of a microgyroscope. Micromachines 9(7), 338 (2018)

    Article  Google Scholar 

  28. Zhao, X., Wang, X., Zhang, S., et al.: Adaptive neural backstepping control design for a class of nonsmooth nonlinear systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 49(9), 1820–1831 (2018)

    Article  Google Scholar 

  29. Khalil, H.K.: Nonlinear Systems, 3rd edn., Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Acknowledgment

This study is partly supported by the National Natural Science Foundation of China (61903226, 61104069), the Key Research and Development Program of Shandong Province (No. 2021CXGC011205, 2021TSGC1053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Shang or Chengdong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shang, F., Ji, Y., Duan, J., Li, C., Peng, W. (2022). Backstepping Control of Air-Handling Unit for Indoor Temperature Regulation. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics