Skip to main content

Dynamic Monitoring Method Based on Comparative Study of Power and Environmental Protection Indicators

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1637))

Included in the following conference series:

  • 652 Accesses

Abstract

In order to promote my country’s comprehensive green development, this paper conducts a research on the correlation mapping between electricity consumption and environmental protection data. Based on the existing short-term electricity load forecasting model, the electricity load forecast data is divided into active electricity and reactive electricity, so as to realize the comprehensive tracking of the operation status of the enterprise’s electrical equipment. The comparative learning algorithm is used to obtain the association mapping of the electricity consumption-environmental data distribution, so that the Encoder data of the pollution discharge data can be obtained based on the electricity consumption. Subsequently, the generator generates enterprise short-term emission forecast data based on the coded data, and combines the Wasserstein distance with the mean square error of similar samples to construct a loss function to improve the quality of the generated data. Analysis and comparison of calculation examples through simulation experiments has show the effectiveness and feasibility of the proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, Y., Yang, X., Guo, L., et al.: Coupling evaluation of green development and safety and efficiency of distribution network incontext of double carbon. Sci. Technol. Eng. 21(30), 12973–12981 (2021)

    Google Scholar 

  2. Matindife, L., Sun, Y., Wang, Z.: Disaggregated power system signal recognition using capsule network. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2020. CCIS, vol. 1265, pp. 345–356. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7670-6_29

    Chapter  Google Scholar 

  3. Sun, K., Chen, Z., Fan, M., et al.: Design of special action plan for pollution prevention and control of key enterprises based on electric power big data mining. Distrib. Utilization 38(04), 28–36 (2021)

    Google Scholar 

  4. Chen, W., Gao, J.: Research on air pollution prevention audit method based on big data visualization analysis technology. Finan. Acc. 04(07), 65–68 (2019)

    Google Scholar 

  5. He, Z., Zhang, T., Hu, Y., et al.: Short-term electric load forecasting model considering the influence of air pollution prevention and control policy. Smart Power 47(05), 1–9 (2019)

    Google Scholar 

  6. An, J., Chen, Q., Dai, F., et al.: Power green dispatch strategies for air pollution prevention and control. Power Syst. Technol. 45(02), 605–612 (2021)

    Google Scholar 

  7. Babuta, A., Gupta, B., Kumar, A., et al.: Power and energy measurement devices: a review, comparison, discussion, and the future of research. Measurement 172, 108961 (2021)

    Article  Google Scholar 

  8. Ting, C., Simon, K., Mohammad, N., et al: A simple framework for contrastive learning of visual representations. In: Proceeding of the 37th International Conference on Machine Learning. Cambridge MA: JMLR, pp. 1597–1607 (2020)

    Google Scholar 

  9. Huang, S., Kang, Z., Xu, Z.: Deep K-Means: a simple and effective method for data clustering. In: Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol.1265, pp. 272–283 (2020) https://doi.org/10.1007/978-981-15-7670-6_23

  10. Xu, Y., Chhim, L., Zheng, B., Nojima, Y.: Stacked deep learning structure with bidirectional long-short term memory for stock market prediction. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2020. CCIS, vol. 1265, pp. 447–460. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7670-6_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, X., Ma, C., Ma, C., Xin, S. (2022). Dynamic Monitoring Method Based on Comparative Study of Power and Environmental Protection Indicators. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1637. Springer, Singapore. https://doi.org/10.1007/978-981-19-6142-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6142-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6141-0

  • Online ISBN: 978-981-19-6142-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics