Abstract
Private Set Intersection (PSI) enables two mistrusting parties to securely evaluate the intersection of their private inputs, without revealing any additional information. With its wide application in privacy protection, it is required to ensure the correctness of the evaluation, especially in conventional client-server setting (also known as unbalanced PSI). Unfortunately, most existing work cannot verify the integrity of the data and the correctness of the evaluation. In this paper, we propose a new publicly verifiable private set intersection protocol in the malicious setting, based on oblivious pseudo-random function (OPRF), fully homomorphic encryption (FHE), and verifiable computation (VC). The key tool to obtain our new protocol is a new publicly verifiable inner product computation on encrypted data. The protocol supports public verification for computation correctness and integrity under preserving privacy with less round number (only requiring 2 rounds), allows batching technique under Residue Number System (RNS). That is used for enhancing the FHE. Also, we implement our protocol, and the result is close to the most effective unbalanced PSI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Let H be a random oracle hash function with range \(\mathbb {Z}_q\), \(H'\) be a map to a sufficiently long bit string. The receiver has an input \(x\in \{0,1\}^*\) and the sender has a key \(s\in \mathbb {Z}_q^*\). The receiver chooses \(t \in \mathbb {Z}_q^*\) and sends \(H(x)^t\) to the sender. The sender returns the \((H(x)^{t})^{s}\). The receiver then outputs \(H'(H(x)^{s})=H'((H(x)^{t})^{s})^{1/t}\).
- 2.
The proofs can be used repeatedly by different people, so it is difficult for the sender to provide false proofs.
References
Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection on outsourced private datasets. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_9
Armknecht, F., et al.: A guide to fully homomorphic encryption. IACR Cryptology ePrint Archive, p. 1192 (2015)
Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_23
Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_4
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36 (2014)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)
Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS 2007, pp. 498–507. ACM (2007)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society (2001)
Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: CCS 2019, pp. 395–412. ACM (2019)
Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious security. In: CCS 2018, pp. 1223–1237. ACM (2018)
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: CCS 2017, pp. 1243–1255. ACM (2017)
Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)
Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: CCS 2013, pp. 789–800. ACM (2013)
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, p. 144 (2012)
Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 844–855. ACM (2014)
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM (2009)
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: ICML 2016, pp. 201–210. JMLR.org (2016)
Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_10
Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_26
Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_13
Kerschbaum, F.: Outsourced private set intersection using homomorphic encryption. In: ASIACCS 2012, pp. 85–86. ACM (2012)
Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. Proc. Priv. Enhancing Technol. 2017(4), 177–197 (2017)
Li, J., Liu, Y., Wu, S.: Pipa: privacy-preserving password checkup via homomorphic encryption. In: ASIA CCS 2021, pp. 242–251. ACM (2021)
Marlinspike, M.: The difficulty of private contact discovery (2014). https://whispersystems.org/blog/contact-discovery. A company sponsored blog post
Mayer, D.A., Wetzel, S.: Verifiable private equality test: enabling unbiased 2-party reconciliation on ordered sets in the malicious model. In: ASIACCS 2012, pp. 46–47. ACM (2012)
Mezzour, G., Perrig, A., Gligor, V., Papadimitratos, P.: Privacy-preserving relationship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_13
Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22
Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_24
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX Security Symposium 2015, pp. 515–530. USENIX Association (2015)
Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_5
Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security Symposium 2014, pp. 797–812. USENIX Association (2014)
Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 203–221. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_11
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: CCS 2017, pp. 1229–1242. ACM (2017)
Microsoft SEAL (release 3.6) (2020). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA
Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserving error resilient DNA searching through oblivious automata. In: CCS 2007, pp. 519–528. ACM (2007)
Acknowledgements
This work was supported by the National Nature Science Foundation of China (No. 62172434).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Fiore et al.’s Hash Function for RNS Representation
A Fiore et al.’s Hash Function for RNS Representation
Lemma 3
Let \(\mathcal {B}=\{q_1,\cdots ,q_\ell \}\) be a RNS base of relatively prime moduli which size \(\ell \) is its number of elements, \(q=\prod _{i=1}^\ell q_i\). If x and g are given in their RNS form \((x_1,\cdots ,x_\ell )\) and \((g_1,\cdots ,g_\ell )\), then \(|g^x|_q\) is in the RNS form \((|g_1^{x_1}|_{q_1}\), \(\cdots \), \(|g_\ell ^{x_\ell }|_{q_\ell })\).
Proof
The Chinese Remainder Theorem (CRT) ensures the uniqueness of this representation \( |g^x|_q =|g^{|\sum _{i=1}^\ell |x_i\frac{q_i}{q}|_{q_i}\times \frac{q}{q_i}|_q}|_q =\prod _{i=1}^n |g^{||x_i\frac{q_i}{q}|_{q_i}\times \frac{q}{q_i}|_q}|_q, \) where \(\frac{q_i}{q}\) is the multiplicative inverse of \(\frac{q}{q_i}\) on \(q_i\). Due to \( \frac{q}{q_i}\cdot \frac{q_i}{q}=1 \bmod q_i, \frac{q}{q_i}\cdot \frac{q_j}{q}=0 \bmod q_i, i\ne j, \)
Therefore, the RNS form of \(g^x\) is \((|g_1^{x_1}|_{q_1},\cdots ,|g_\ell ^{x_\ell }|_{q_\ell })\). \(\square \)
Lemma 4
Let n be positive integer and q be prime, \(\mathcal {R}_q=\mathbb {Z}_q[X]/(X^n+1)\). On \(\mathcal {D}=\{c\in \mathcal {R}_q[Y]: \deg _X(c)<n, \deg _Y(c)\le 1\}\), for all \(c,c'\in \mathcal {D}\), the probability of a collision \( \Pr [c\ne c'\wedge \texttt{H}(c)=\texttt{H}(c')]\le (\frac{n^2+qn+2}{q^2}-\frac{(n-1)^3}{q^3})^2. \)
Proof
If \(\texttt{H}(c)=\texttt{H}(c')\), then \(g^{\hat{H}_{\alpha , \beta }(c)}=g^{\hat{H}_{\alpha , \beta }(c)}\wedge h^{\hat{H}_{\alpha , \beta }(c')}=h^{\hat{H}_{\alpha , \beta }(c')}\). Let \(\varDelta =c-c'\in \mathcal {R}_q[Y]\). Then, \(\varDelta \) is a non-zero polynomial of degree less than n in X and degree at most 1 in Y. Let \(\alpha , \beta \) be random in \(\mathbb {Z}_q\). Every collison is either \(\varDelta (x,\beta )=0\) or \(\varDelta (x ,\beta )\ne 0 \wedge \varDelta (\alpha ,\beta )=0\). In the first case, assuming \(\varDelta (x,\beta )=a_1(x)\beta +a_0(x)=0\). If \(a_1(x)=0\wedge a_0(x)=0\), then we have \(\varDelta (x,\beta )\) must be equal to zero for all \(\beta \in \mathbb {Z}_q\). The probability is at most \(\frac{n-1}{q}\times \frac{n-1}{q}\). If \(a_1(x)\ne 0\), then we have \(\beta =-\frac{a_0(x)}{a_1(x)}\in \mathbb {Z}_q\). The probability that \(\beta \) has a solution is at most \((1-\frac{n-1}{q})\times \frac{1}{q}\). In the second case, the probability that \(\varDelta (x ,\beta )\) is not equal to zero is at most \(1-\frac{n-1}{q}\times \frac{n-1}{q}-(1-\frac{n-1}{q}\times \frac{1}{q})\times \frac{1}{q}\) and the probability that \(\alpha \) has a solution is at most \(\frac{n-1}{q}\). So we conclude that the the probability
\(\square \)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jiang, Y., Wei, J., Pan, J. (2022). Publicly Verifiable Private Set Intersection from Homomorphic Encryption. In: Chen, X., Huang, X., Kutyłowski, M. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2022. Communications in Computer and Information Science, vol 1663. Springer, Singapore. https://doi.org/10.1007/978-981-19-7242-3_8
Download citation
DOI: https://doi.org/10.1007/978-981-19-7242-3_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7241-6
Online ISBN: 978-981-19-7242-3
eBook Packages: Computer ScienceComputer Science (R0)