Abstract
Convolutional neural networks (CNNs) are widely used in computer vision-based problems. Video and image data are dominating the Internet. This has led to extensive use of deep learning (DL)-based models in solving tasks like image recognition, image segmentation, video classification, etc. Encouraged by the enhanced performance of CNNs, we have developed ED-NET in order to classify videos as teaching videos or non-teaching videos. Along with the model, we have developed a novel dataset, Teach-VID, containing teaching videos. The data is collected through our e-learning platform Gyaan, an online end-to-end teaching platform developed by our organization, GahanAI. The purpose is to make sure we can restrict non-teaching videos from being played on our portal. The models proposed along with the dataset provide benchmarking results. There are two models presented one that makes use of 3D-CNN and the other uses 2D-CNN and LSTM. The results suggest that the models can be used in real-time settings. The model based on 3D-CNN has reached an accuracy of 98.87%, and the model based on 2D-CNN has reached an accuracy of 96.34%. The loss graph of both models suggests that there is no issue of overfitting and underfitting. The proposed model and dataset can provide useful results in the field of video classification regarding teaching versus non-teaching videos.
Supported by Organization GahanAI, Bengaluru, India
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., Vijayanarasimhan, S.: Youtube-8m: a large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016)
Bhardwaj, S., Srinivasan, M., Khapra, M.M.: Efficient video classification using fewer frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 354–363 (2019)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)
Li, X., Wang, Y., Zhou, Z., Qiao, Y.: Smallbignet: integrating core and contextual views for video classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1092–1101 (2020)
Lin, R., Xiao, J., Fan, J.: Nextvlad: an efficient neural network to aggregate frame-level features for large-scale video classification. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Long, X., De Melo, G., He, D., Li, F., Chi, Z., Wen, S., Gan, C.: Purely attention based local feature integration for video classification. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.: Rotate to attend: convolutional triplet attention module. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3139–3148 (2021)
Peng, Y., Zhao, Y., Zhang, J.: Two-stream collaborative learning with spatial-temporal attention for video classification. IEEE Trans. Circuits Syst. Video Technol. 29(3), 773–786 (2018)
Pouyanfar, S., Wang, T., Chen, S.C.: Residual attention-based fusion for video classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vision Appl. 24(5), 971–981 (2013)
Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5552–5561 (2019)
Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430–1439 (2018)
Xu, X., Wu, X., Wang, G., Wang, H.: Violent video classification based on spatial-temporal cues using deep learning. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 1, pp. 319–322. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Gautam, A., Hazra, S., Verma, R., Maji, P., Balabantaray, B.K. (2023). ED-NET: Educational Teaching Video Classification Network. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_12
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)