Abstract
After ground-breaking achievements through the application of modern deep learning, there is a considerable push towards using machine learning systems for visual inspection tasks part of most industrial manufacturing processes. But whilst there exist a lot of successful proof-of-concept implementations, productive use proves problematic. Whilst missing interpretability is one concern, the constant presence of data drift is another. Changes in pre-materials or process and degradation of sensors or product redesigns impose constant change towards statically trained machine learning models. To handle these kind of changes, a measurement of system confidence is needed. Since pure model output probabilities often lack in this concern better solutions are required. In this work, we compare and contrast several pre-existing methods used to describe model confidence. In contrast to previous works, they are evaluated on a large set of real-world manufacturing data. It is shown that utilizing an approach based on auto-encoder reconstruction error proves to be most promising in all scenarios tested.
This work was supported by OSRAM Automotive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety (2016). https://doi.org/10.48550/ARXIV.1606.06565, https://arxiv.org/abs/1606.06565
An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)
Barros, R.S.M., Santos, S.G.T.C.: A large-scale comparison of concept drift detectors. Inf. Sci. 451–452, 348–370 (2018). https://doi.org/10.1016/j.ins.2018.04.014, http://www.sciencedirect.com/science/article/pii/S0020025518302743
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, pp. 39–57. IEEE (2017)
Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)
Du, X., Wang, Z., Cai, M., Li, Y.: VOS: learning what you don’t know by virtual outlier synthesis. CoRR abs/2202.01197, https://arxiv.org/abs/2202.01197 (2022)
Forza, C.: Work organization in lean production and traditional plants: what are the differences? Int. J. Oper. Prod. Manage. (1996)
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Hengel, A.V.D.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Rob. 37(3), 362–386 (2020)
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: International Conference on Neural Information Processing, pp. 373–382. Springer (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks (2016). https://doi.org/10.48550/ARXIV.1603.05027, https://arxiv.org/abs/1603.05027
Hein, M., Andriushchenko, M., Bitterwolf, J.: Why Relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 41–50 (2019)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks (2018)
Jiang, H., Kim, B., Guan, M.Y., Gupta, M.R.: To trust or not to trust a classifier. In: NeurIPS, pp. 5546–5557 (2018)
Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)
Jordaney, R., Sharad, K., Dash, S.K., Wang, Z., Papini, D., Nouretdinov, I., Cavallaro, L.: Transcend: detecting concept drift in malware classification models. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 625–642. USENIX Association, Vancouver, BC (2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of post-hoc interpretability: unjustified counterfactual explanations. arXiv preprint arXiv:1907.09294 (2019)
Lee, K.B., Cheon, S., Kim, C.O.: A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 30(2), 135–142 (2017)
Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Li, D., Liang, L.Q., Zhang, W.J.: Defect inspection and extraction of the mobile phone cover glass based on the principal components analysis. Int. J. Adv. Manuf. Technol. 73(9), 1605–1614 (2014)
Lin, C.C., Deng, D.J., Kuo, C.H., Chen, L.: Concept drift detection and adaption in big imbalance industrial IoT data using an ensemble learning method of offline classifiers. IEEE Access 7, 56198–56207 (2019)
Malhi, A., Gao, R.X.: PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Measur. 53(6), 1517–1525 (2004)
Mandelbaum, A., Weinshall, D.: Distance-based confidence score for neural network classifiers. arXiv preprint arXiv:1709.09844 (2017)
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Ozdemir, R., Koc, M.: A quality control application on a smart factory prototype using deep learning methods. In: 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 46–49. IEEE (2019)
Papernot, N., McDaniel, P.: Deep k-nearest neighbors: towards confident, interpretable and robust deep learning. arXiv preprint arXiv:1803.04765 (2018)
Piccialli, F., Di Somma, V., Giampaolo, F., Cuomo, S., Fortino, G.: A survey on deep learning in medicine: why, how and when? Inf. Fusion 66, 111–137 (2021)
Reis, D.M.d., Flach, P., Matwin, S., Batista, G.: Fast unsupervised online drift detection using incremental Kolmogorov-Smirnov test. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1545–1554 (2016)
Sethi, T.S., Kantardzic, M.: On the reliable detection of concept drift from streaming unlabeled data. Expert Syst. Appl. 82, 77–99 (2017)
Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., Wellbrock, W.: Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors 19(18), 3987 (2019)
Wankerl, H., Stern, M.L., Altieri-Weimar, P., Al-Baddai, S., Lang, K.J., Roider, F., Lang, E.W.: Fully convolutional networks for void segmentation in X-ray images of solder joints. J. Manuf. Process. 57, 762–767 (2020)
Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. CoRR abs/2110.11334, https://arxiv.org/abs/2110.11334 (2021)
Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=BJJLHbb0-
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Mascha, P. (2023). A Comparison of Model Confidence Metrics on Visual Manufacturing Quality Data. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_14
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)