Abstract
An effective way to generate high dynamic range (HDR) videos is to capture a sequence of low dynamic range (LDR) frames with alternate exposures and interpolate the intermediate frames. Video frame interpolation techniques can help reconstruct missing information from neighboring images of different exposures. Most of the conventional video frame interpolation techniques compute optical flow between successively captured frames and linearly interpolate them to obtain the intermediate frames. However, these techniques will fail when there is a nonlinear motion or sudden brightness changes in the scene. There is a new class of sensors called event sensors which asynchronously measures per-pixel brightness changes and offer advantages like high temporal resolution, high dynamic range, and low latency. For HDR video reconstruction, we recommend using a hybrid imaging system consisting of a conventional camera, which captures alternate exposure LDR frames, and an event camera which captures high-speed events. We interpolate the missing frames for each exposure by using an event-based interpolation technique which takes in the nearest image frames corresponding to that exposure and the high-speed events data between these frames. At each timestamp, once we have interpolated all the LDR frames for different exposures, we use a deep learning-based algorithm to obtain the HDR frame. We compare our results with those of non-event-based interpolation methods and found that event-based techniques perform better when a large number of frames need to be interpolated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, USA, 1997, SIGGRAPH ’97, pp. 369–378. ACM Press/Addison-Wesley Publishing Co (1997)
Zhao, H., Shi, B., Fernandez-Cull, C., Yeung, S.K., Raskar, R.: Unbounded high dynamic range photography using a modulo camera. In: 2015 IEEE International Conference on Computational Photography (ICCP), pp. 1–10. IEEE (2015)
Tocci, M.D., Kiser, C., Tocci, N., Sen, P.: A versatile HDR video production system. ACM Trans. Graph. (TOG) 30(4), 1–10 (2011)
Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating exposures. Comput. Graph. Forum Wiley Online Libr. 38, 193–205 (2019)
Brandli, C., Berner, R., Yang, M., Liu, S.-C., Delbruck, T.: A 240\(\times \) 180 130 dB 3 \(\upmu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circ. 49(10), 2333–2341 (2014)
Tulyakov, S., Gehrig, D., Georgoulis, S., Erbach, J., Gehrig, M., Li, Y., Scaramuzza, D.: Time lens: event-based video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16155–16164 (2021)
Yan, Q., Gong, D., Shi, Q., van den Hengel, A., Shen, C., Reid, I., Zhang, Y.: Attention-guided network for ghost-free high dynamic range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1751–1760 (2019)
Li, H., Yuan, Y., Wang, Q.: Video frame interpolation via residue refinement. In: ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2613–2617. IEEE (2020)
Jiang, H., Sun, D., Jampani, V., Yang, M.-H., Learned-Miller, E., Kautz, J.: Super slomo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)
Arif Khan, E., Oguz Akyuz, A., Reinhard, E.: Ghost removal in high dynamic range images. In: 2006 International Conference on Image Processing, pp. 2005–2008. IEEE (2006)
Oh, T.H., Lee, J.-Y., Tai, Y.-W., Kweon, I.S.: Robust high dynamic range imaging by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1219–1232 (2014)
Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31(6), 203 (2012)
Kalantari, N.K., Ramamoorthi, R., et al.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(4), 1–12, Art. No. 144 (2017)
Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping. In: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 349–356 (2016)
Moriwaki, K., Yoshihashi, R., Kawakami, R., You, S., Naemura, T.: Hybrid loss for learning single-image-based HDR reconstruction. arXiv preprint arXiv:1812.07134 (2018)
Zhang, J., Lalonde, J.-F.: Learning high dynamic range from outdoor panoramas. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4519–4528 (2017)
Santana Santos, M., Ren, T.I., Khademi Kalantari, N.: Single image HDR reconstruction using a CNN with masked features and perceptual loss. arXiv preprint arXiv:2005.07335 (2020)
Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. (TOG) 36(6), 1–15 (2017)
Niu, Y., Wu, J., Liu, W., Guo, W., Lau, R.W.H.: HDR-GAN: HDR image reconstruction from multi-exposed LDR images with large motions. IEEE Trans. Image Process. 30, 3885–3896 (2021)
Yan, Q., Zhang, L., Liu, Y., Sun, J., Shi, Q., Zhang, Y.: Deep HDR imaging via a non-local network. IEEE Trans. Image Process. 29, 4308–4322 (2020)
Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 117–132 (2018)
Hirakawa, K., Simon, P.M.: Single-shot high dynamic range imaging with conventional camera hardware. In: 2011 International Conference on Computer Vision, pp. 1339–1346. IEEE (2011)
Chen, G., Chen, C., Guo, S., Liang, Z., Wong, K.Y.K., Zhang, L.: HDR video reconstruction: a coarse-to-fine network and a real-world benchmark dataset. arXiv preprint arXiv:2103.14943 (2021)
Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger, S., Davison, A., Conradt, J., Daniilidis, K., et al.: Event-based vision: a survey. arXiv preprint arXiv:1904.08405 (2019)
Froehlich, J., Grandinetti, S., Eberhardt, B., Walter, S., Schilling, A., Brendel, H.: Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays. Digit. Photogr. X Int. Soc. Opt. Photonics 9023, 90230X (2014)
Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: Conference on Robot Learning, pp. 969–982. PMLR (2018)
Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. (TOG) 30(4), 1–14 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Samra, R., Mitra, K., Shedligeri, P. (2023). High-Speed HDR Video Reconstruction from Hybrid Intensity Frames and Events. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_15
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)