Skip to main content

A Black-Box Attack on Optical Character Recognition Systems

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

Adversarial machine learning is an emerging area showing the vulnerability of deep learning models. Exploring attack methods to challenge state-of-the-art artificial intelligence (AI) models is an area of critical concern. The reliability and robustness of such AI models are one of the major concerns with an increasing number of effective adversarial attack methods. Classification tasks are a major vulnerable area for adversarial attacks. The majority of attack strategies are developed for colored or gray-scaled images. Consequently, adversarial attacks on binary image recognition systems have not been sufficiently studied. Binary images are simple—two possible pixel-valued signals with a single channel. The simplicity of binary images has a significant advantage compared to colored and gray-scaled images, namely computation efficiency. Moreover, most optical character recognition systems (OCRs), such as handwritten character recognition, plate number identification, and bank check recognition systems, use binary images or binarization in their processing steps. In this paper, we propose a simple yet efficient attack method, efficient combinatorial black-box adversarial attack (ECoBA), on binary image classifiers. We validate the efficiency of the attack technique on two different data sets and three classification networks, demonstrating its performance. Furthermore, we compare our proposed method with state-of-the-art methods regarding advantages and disadvantages as well as applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classification. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pp. 99–108. Association for Computing Machinery, New York, NY, USA (2004). ISBN 1581138881. https://doi.org/10.1145/1014052.1014066

  2. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recogn. 84, 317–331 (2018.) ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.07.023

  3. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. Dumitru Erhan (2014)

    Google Scholar 

  4. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015). https://doi.org/10.48550/arXiv.1412.6572

  5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49

  6. Nguyen, A., Yosinski, J., Clune, J.: High confidence predictions for unrecognizable images: deep neural networks are easily fooled (2015)

    Google Scholar 

  7. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks (2016)

    Google Scholar 

  8. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 1528–1540. Association for Computing Machinery, New York, NY, USA (2016.) ISBN 9781450341394. https://doi.org/10.1145/2976749.2978392

  9. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. CoRR (2016). https://doi.org/10.48550/arXiv.1607.02533

  10. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., Song, D.: Robust physical-world attacks on deep learning models (2018)

    Google Scholar 

  11. Smith, R.: An overview of the tesseract OCR engine. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR), pp. 629–633 (2007)

    Google Scholar 

  12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2019)

    Google Scholar 

  13. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019). ISSN 1941-0026. https://doi.org/10.1109/TEVC.2019.2890858

  14. Tramér, F., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: The space of transferable adversarial examples (2017)

    Google Scholar 

  15. Balkanski, E., Chase, H., Oshiba, K., Rilee, A., Singer, Y., Wang, R.: Adversarial attacks on binary image recognition systems (2020)

    Google Scholar 

  16. Wang, Y., Zhang, W., Shen, T., Hui, Y., Wang, F.-Y.: Binary thresholding defense against adversarial attacks. Neurocomputing 445, 61–71 (2021). https://doi.org/10.1016/j.neucom.2021.03.036

  17. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2 (2010)

  18. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373 (2017)

  19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  20. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Bayram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayram, S., Barner, K. (2023). A Black-Box Attack on Optical Character Recognition Systems. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_18

Download citation

Publish with us

Policies and ethics