Abstract
Segmentation of the bone structures in computed tomography (CT) is crucial for research as it plays a substantial role in surgical planning, disease diagnosis, identification of organs and tissues, and analysis of fractures and bone densities. Manual segmentation of bones could be tedious and not suggested as there could be human bias present. In this paper, we evaluate some existing approaches for bone segmentation and present a method for segmenting bone tissues from CT images. In this approach, the CT image is first enhanced to remove the artifacts surrounding the bone. Subsequently, the image is binarized and outliers are removed to get the bone regions. The proposed method has a Dice index of 0.9321, Jaccard index (IoU) of 0.8729, a precision of 0.9004, and a recall of 0.9662.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–37 (2000). https://doi.org/10.1146/annurev.bioeng.2.1.315
Tomazevic, M., Kreuh, D., Kristan, A., Puketa, V., Cimerman, M.: Preoperative planning program tool in treatment of articular fractures process of segmentation procedure. In: Bamidis, P.D., Pallikarakis, N. (eds.) XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. IFMBE Proceedings, vol. 29. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13039-7_108
Tassani, S., Matsopoulos, G.K., Baruffaldi, F.: 3D identification of trabecular bone fracture zone using an automatic image registration scheme: a validation study. J. Biomech. 45(11), 2035–2040 (2012)
He, Y., Shi, C., Liu, J., Shi, D.: A segmentation algorithm of the cortex bone and trabecular bone in Proximal Humerus based on CT images. In: 2017 23rd International Conference on Automation and Computing (ICAC), pp. 1–4 (2017). https://doi.org/10.23919/IConAC.2017.8082093
Paulano, F., Jiménez, J.J., Pulido, R.: 3D segmentation and labeling of fractured bone from CT images. Vis. Comput. 30, 939–948 (2014). https://doi.org/10.1007/s00371-014-0963-0
Fornaro, J., Székely, G., Harders, M.: Semi-automatic segmentation of fractured Pelvic bones for surgical planning. In: Bello, F., Cotin, S. (eds.) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol. 5958. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11615-5_9
Kyle Justice, R., Stokely, E.M., Strobel, J.S., Ideker M.D.R.E., Smith, W.M.: Medical image segmentation using 3D seeded region growing. In: Proceedings of SPIE 3034, Medical Imaging 1997: Image Processing (1997). https://doi.org/10.1117/12.274179
Kaminsky, J., Klinge, P., Rodt, T., Bokemeyer, M., Luedemann, W., Samii, M.: Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput. Med. Imag. Graph. 28(3), 119–27 (2004). https://doi.org/10.1016/j.compmedimag.2003.12.001
Lee, P.-Y., Lai, J.-Y., Hu, Y.-S., Huang, C.-Y., Tsai, Y.-C., Ueng, W.-D.: Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed. Eng. Appl. Basis Commun. 24, 245–262 (2012). https://doi.org/10.1142/S101623721250007X
Huang, C.-Y., Luo, L.-J., Lee, P.-Y., Lai, J.-Y., Wang, W.-T.: Efficient segmentation algorithm for 3D bone models construction on medical images. J. Med. Biol. Eng. (2011). https://doi.org/10.5405/jmbe.734
Pérez-Carrasco, J.A., Acha-Piñero, B., Serrano, C.: Segmentation of bone structures in 3D CT images based on continuous max-flow optimization. In: Progress in Biomedical Optics and Imaging—Proceedings of SPIE (2015). https://doi.org/10.1117/12.2082139
Klein, A., Warszawski, J., Hillengaß, J.: Automatic bone segmentation in whole-body CT images. Int. J. CARS 14, 21–29 (2019). https://doi.org/10.1007/s11548-018-1883-7
Zhang, J., Qian, W., Xu, D., Pu, Y.: DFM-Net: a contextual inference network for T2-weighted image segmentation of the pelvis. In: Thirteenth International Conference on Graphics and Image Processing (ICGIP 2021). SPIE 12083 (2021). https://doi.org/10.1117/12.2623470
Xiong, X., Smith, B.J., Graves, S.A., Sunderland, J.J., Graham, M.M., Gross, B.A., Buatti, J.M., Beichel, R.R.: Quantification of uptake in pelvis F-18 FLT PET-CT images using a 3D localization and segmentation CNN. Med. Phys. 49(3), 1585–1598 (2022). https://doi.org/10.1002/mp.15440
Gangwar, T., Calder, J., Takahashi, T., Bechtold, J., Schillinger, D.: Robust variational segmentation of 3D bone CT data with thin cartilage interfaces. Med. Image Anal. 47 (2018). https://doi.org/10.1016/j.media.2018.04.003
Sebastian, T.B., Tek, H., Crisco, J.J., Kimia, B.B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7(1), 21–45 (2003). https://doi.org/10.1016/s1361-8415(02)00065-8
Shadid, W., Willis, A.: Bone fragment segmentation from 3D CT imagery using the probabilistic watershed transform. Proc. IEEE Southeastcon 2013, 1–8 (2013). https://doi.org/10.1109/SECON.2013.6567509
Moghari, M.H., Abolmaesumi, P.: Global registration of multiple bone fragments using statistical atlas models: feasibility experiments. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008, 5374–7 (2008). https://doi.org/10.1109/IEMBS.2008.4650429
USevillabonemuscle Dataset. http://grupo.us.es/grupobip/research/research-topics/segmentation-of-abdominal-organs-and-tumors/
Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3), 60 (2019). https://doi.org/10.1007/s10916-019-1176-x
Acknowledgements
This research is supported by JSPS Grant-in-Aid for Scientific Research (C) (20K11873) and Chubu University Grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Singhal, S.K., Goswami, B., Iwahori, Y., Bhuyan, M.K., Ouchi, A., Shimizu, Y. (2023). Segmentation of Bone Tissue from CT Images. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_19
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)