Abstract
Real-time applications generate an enormous amount of data that can potentially change data distribution. The underline change in data distribution concerning time causes concept drift. The learning model of the data stream encounters concept drift problems while predicting the patterns. It leads to deterioration in the learning model’s performance. Additional challenges of high-dimensional data create memory and time requirements. The proposed work develops an unsupervised concept drift detection method to detect virtual drift in non-stationary data. The K-means clustering algorithm is applied to the relevant features to find the stream’s virtual drift. The proposed work reduces the complexity by detecting the drifts using the k highest score features suitable with high-dimensional data. Here, we analyze the data stream’s virtual drift by considering the changes in data distribution of recent and current window data instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: A literature review. J. King Saud Univer. Comput. Inf. Sci. (2021). ISSN 1319-1578. https://doi.org/10.1016/j.jksuci.2021.11.006. URL https://www.sciencedirect.com/science/article/pii/S1319157821003062
Agrahari, Supriya, Singh, Anil Kumar: Disposition-based concept drift detection and adaptation in data stream. Arab. J. Sci. Eng. 47(8), 10605–10621 (2022). https://doi.org/10.1007/s13369-022-06653-4
Souza, V., Parmezan, A.R.S., Chowdhury, F.A., Mueen, A.: Efficient unsupervised drift detector for fast and high-dimensional data streams. Knowl. Inf. Syst. 63(6), 1497–1527 (2021)
Xuan, Junyu, Jie, Lu., Zhang, Guangquan: Bayesian nonparametric unsupervised concept drift detection for data stream mining. ACM Trans. Intell. Syst. Technol. (TIST) 12(1), 1–22 (2020)
Huang, H., Yoo, S., Kasiviswanathan, S.P.: Unsupervised feature selection on data streams. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1031–1040 (2015)
de Mello, R.F., Vaz, Y., Grossi, C.H., Bifet, A.: On learning guarantees to unsupervised concept drift detection on data streams. Expert Syst. Appl. 117, 90–102 (2019)
Wiwatcharakoses, C., Berrar, D.: Soinn+, a self-organizing incremental neural network for unsupervised learning from noisy data streams. Expert Syst. Appl. 143, 113069 (2020)
Gözüaçık, Ömer., Can, Fazli: Concept learning using one-class classifiers for implicit drift detection in evolving data streams. Artif. Intell. Rev. 54(5), 3725–3747 (2021)
Pinto, F., Sampaio, M.O.P., Bizarro, P.: Automatic model monitoring for data streams. arXiv preprint arXiv:1908.04240 (2019)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Brazilian Symposium on Artificial Intelligence, pp. 286–295. Springer, Berlin (2004)
Bifet, Albert: Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explor. Newsl. 11(1), 55–56 (2009)
Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recogn. Lett. 33(2), 191–198 (2012)
Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data streams. In: 2014 IEEE International Conference on Data Mining, pp. 863–868 (2014). https://doi.org/10.1109/ICDM.2014.50
Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014)
Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) Discovery Science, pp. 264–269, Springer, Berlin (2007). ISBN 978-3-540-75488-6
de Barros, R.S.M., Hidalgo, J.I.G., de Lima Cabral, D.R.: Wilcoxon rank sum test drift detector. Neurocomputing 275, 1954–1963 (2018)
Franke, T.M., Ho, T., Christie, C.A.: The chi-square test: Often used and more often misinterpreted. Am. J. Eval. 33(3), 448–458 (2012)
Gama, João., Žliobaitė, Indrė, Bifet, Albert, Pechenizkiy, Mykola, Bouchachia, Abdelhamid: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)
Demšar, Janez: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Agrahari, S., Singh, A.K. (2023). Unsupervised Virtual Drift Detection Method in Streaming Environment. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_25
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)