Skip to main content

Deep Learning Sequence Models for Forecasting COVID-19 Spread and Vaccinations

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

Abstract

Time series forecasting constitutes an important aspect of traditional machine learning prediction problems. It includes analyzing historic time series data to make future predictions and thus enabling strategic decision-making. It has several practical applications throughout various industries including weather, finance, engineering, economy, healthcare, environment, business, retail, social studies, etc. On the verge of increasing COVID-19 cases globally, there is a need to predict the variables like daily cases, positive tests, vaccinations taken, etc. using state-of-the-art techniques for monitoring the spread of the disease. Understanding underlying patterns in these variables and predicting them will help monitor the spread closely and also give insights into the future. Sequence models have demonstrated excellent abilities in capturing long-term dependencies and hence can be used for this problem. In this paper, we present two recurrent neural network-based approaches to predict the daily confirmed COVID-19 cases, daily total positive tests and total individuals vaccinated using LSTM and GRU. Our proposed approaches achieve a mean absolute percentage error of less than 1.9% on the COVID-19 cases in India time series dataset. The novelty in our research lies in the long-term prediction of daily confirmed cases with a MAPE of less than 1.9% for a relatively long forecast horizon of 165 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos, Solitons & Fractals 139, 110017 (2020)

    Google Scholar 

  2. Shastri, S., Singh, K., Kumar, S., Kour, P., Mansotra, V.: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos, Solitons & Fractals 140, 110227 (2020)

    Google Scholar 

  3. Devaraj, J., Elavarasan, R.M., Pugazhendhi, R., Shafiullah, G.M., Ganesan, S., Jeysree, A.K., Khan, I.A., Hossain, E.: Forecasting of COVID-19 cases using deep learning models: is it reliable and practically significant? Results Phys. 21, 103817 (2021)

    Google Scholar 

  4. Liao, Z., Lan, P., Fan, X., Kelly, B., Innes, A., Liao, Z.: SIRVD-DL: a COVID-19 deep learning prediction model based on time-dependent SIRVD. Comput. Biol. Med. 138, 104868 (2021)

    Google Scholar 

  5. Kumar, Shiu, Sharma, Ronesh, Tsunoda, Tatsuhiko, Kumarevel, Thirumananseri, Sharma, Alok: Forecasting the spread of COVID-19 using LSTM network. BMC Bioinform. 22(6), 1–9 (2021)

    Google Scholar 

  6. Chaurasia, V., Pal, S. (2020) Application of machine learning time series analysis for prediction COVID-19 pandemic. Res. Biomed. Eng. 1–13 (2020)

    Google Scholar 

  7. Mohan, S., Solanki, A.K., Taluja, H.K., Singh, A.: Predicting the impact of the third wave of COVID-19 in India using hybrid statistical machine learning models: A time series forecasting and sentiment analysis approach. Comput. Biol. Med. 144, 105354 (2022)

    Google Scholar 

  8. Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals 135, 109864 (2020)

    Google Scholar 

  9. Ghany, K.K.A., Zawbaa, H.M., Sabri, H.M.: COVID-19 prediction using LSTM algorithm: GCC case study. Inform. Med. Unlocked 23, 100566 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kodipalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guha, S., Kodipalli, A. (2023). Deep Learning Sequence Models for Forecasting COVID-19 Spread and Vaccinations. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_29

Download citation

Publish with us

Policies and ethics