Abstract
Molecular subtyping has a significant role in cancer prognosis and targeted therapy. However, the prevalent manual procedure for this has disadvantages, such as deficit of medical experts, inter-observer variability, and high time consumption. This paper suggests a novel approach to automate molecular subtyping of breast cancer using an end-to-end deep learning model. Immunohistochemistry (IHC) images of the tumor tissues are analyzed using a three-stage system to determine the subtype. A modified Res-UNet CNN architecture is used in the first stage to segregate the biomarker responses. This is followed by using a CNN classifier to determine the status of the four biomarkers. Finally, the biomarker statuses are combined to determine the specific subtype of breast cancer. For each IHC biomarker, the performance of segmentation models is analyzed qualitatively and quantitatively. In addition, the patient-level biomarker prediction results are also assessed. The findings of the suggested technique demonstrate the potential of computer-aided techniques to diagnose the subtypes of breast cancer. The proposed automated molecular subtyping approach can accelerate pathology procedures, considerably reduce pathologists’ workload, and minimize the overall cost and time required for diagnosis and treatment planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abubakar, M., Howat, W.J., Daley, F., Zabaglo, L., McDuffus, L.A., Blows, F., Coulson, P., Raza Ali, H., Benitez, J., Milne, R., et al.: High-throughput automated scoring of ki67 in breast cancer tissue microarrays from the breast cancer association consortium. J. Pathol. Clin. Res. 2(3), 138–153 (2016)
Gerdes, J., Li, L., Schlueter, C., Duchrow, M., Wohlenberg, C., Gerlach, C., Stahmer, I., Kloth, S., Brandt, E., Flad, H.D.: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody ki-67. Am. J. Pathol. 138(4), 867 (1991)
Goldhirsch, A., Winer, E.P., Coates, A., Gelber, R., Piccart-Gebhart, M., Thürlimann, B., Senn, H.J., Albain, K.S., André, F., Bergh, J., et al.: Personalizing the treatment of women with early breast cancer: highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 24(9), 2206–2223 (2013)
Hall, B.H., Ianosi-Irimie, M., Javidian, P., Chen, W., Ganesan, S., Foran, D.J.: Computer-assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls. BMC Med. Imaging 8(1), 1–13 (2008)
Jamaluddin, M.F., Fauzi, M.F., Abas, F.S., Lee, J.T., Khor, S.Y., Teoh, K.H., Looi, L.M.: Cell classification in er-stained whole slide breast cancer images using convolutional neural network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 632–635. IEEE (2018)
KHAN NIAZI, M.K., Yearsley, M.M., Zhou, X., Frankel, W.L., Gurcan, M.N.: Perceptual clustering for automatic hotspot detection from ki-67-stained neuroendocrine tumour images. J. Microsc. 256(3), 213–225 (2014)
Konsti, J., Lundin, M., Joensuu, H., Lehtimäki, T., Sihto, H., Holli, K., Turpeenniemi-Hujanen, T., Kataja, V., Sailas, L., Isola, J., et al.: Development and evaluation of a virtual microscopy application for automated assessment of ki-67 expression in breast cancer. BMC Clin. Pathol. 11(1), 1–11 (2011)
Kornegoor, R., Verschuur-Maes, A.H., Buerger, H., Hogenes, M.C., De Bruin, P.C., Oudejans, J.J., Van Der Groep, P., Hinrichs, B., Van Diest, P.J.: Molecular subtyping of male breast cancer by immunohistochemistry. Mod. Pathol. 25(3), 398–404 (2012)
Lakshmi, S., Vijayasenan, D., Sumam, D.S., Sreeram, S., Suresh, P.K.: An integrated deep learning approach towards automatic evaluation of ki-67 labeling index. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON). pp. 2310–2314. IEEE (2019)
Lloyd, M.C., Allam-Nandyala, P., Purohit, C.N., Burke, N., Coppola, D., Bui, M.M.: Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it? J. Pathol. Inform. 1 (2010)
Mathew, T., Niyas, S., Johnpaul, C., Kini, J.R., Rajan, J.: A novel deep classifier framework for automated molecular subtyping of breast carcinoma using immunohistochemistry image analysis. Biomed. Signal Process. Control 76, 103657 (2022)
Mofidi, R., Walsh, R., Ridgway, P., Crotty, T., McDermott, E., Keaveny, T., Duffy, M., Hill, A., O’Higgins, N.: Objective measurement of breast cancer oestrogen receptor status through digital image analysis. Eur. J. Surg. Oncol. (EJSO) 29(1), 20–24 (2003)
Mouelhi, A., Sayadi, M., Fnaiech, F.: A novel morphological segmentation method for evaluating estrogen receptors’ status in breast tissue images. In: 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). pp. 177–182. IEEE (2014)
Niyas, S., Vaisali, S.C., Show, I., Chandrika, T., Vinayagamani, S., Kesavadas, C., Rajan, J.: Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3d convolutional neural networks. Biomed. Signal Process. Control 70, 102951 (2021)
Oscanoa, J., Doimi, F., Dyer, R., Araujo, J., Pinto, J., Castaneda, B.: Automated segmentation and classification of cell nuclei in immunohistochemical breast cancer images with estrogen receptor marker. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2399–2402. IEEE (2016)
Perez, E.A., Cortés, J., Gonzalez-Angulo, A.M., Bartlett, J.M.: Her2 testing: current status and future directions. Cancer Treat. Rev. 40(2), 276–284 (2014)
Pitkäaho, T., Lehtimäki, T.M., McDonald, J., Naughton, T.J., et al.: Classifying her2 breast cancer cell samples using deep learning. In: Proc. Irish Mach. Vis. Image Process. Conf., 1–104 (2016)
Rexhepaj, E., Brennan, D.J., Holloway, P., Kay, E.W., McCann, A.H., Landberg, G., Duffy, M.J., Jirstrom, K., Gallagher, W.M.: Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer. Breast Cancer Res. 10(5), 1–10 (2008)
Saha, M., Arun, I., Ahmed, R., Chatterjee, S., Chakraborty, C.: Hscorenet: A deep network for estrogen and progesterone scoring using breast ihc images. Pattern Recogn. 102, 107200 (2020)
Saha, M., Chakraborty, C.: Her2net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process. 27(5), 2189–2200 (2018)
Saha, M., Chakraborty, C., Arun, I., Ahmed, R., Chatterjee, S.: An advanced deep learning approach for ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci. Rep. 7(1), 1–14 (2017)
Shi, P., Zhong, J., Hong, J., Huang, R., Wang, K., Chen, Y.: Automated ki-67 quantification of immunohistochemical staining image of human nasopharyngeal carcinoma xenografts. Sci. Rep. 6(1), 1–9 (2016)
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71(3), 209–249 (2021)
Tuominen, V.J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M., Isola, J.: Immunoratio: a publicly available web application for quantitative image analysis of estrogen receptor (er), progesterone receptor (pr), and ki-67. Breast Cancer Res. 12(4), 1–12 (2010)
Tuominen, V.J., Tolonen, T.T., Isola, J.: Immunomembrane: a publicly available web application for digital image analysis of her2 immunohistochemistry. Histopathology 60(5), 758–767 (2012)
Vandenberghe, M.E., Scott, M.L., Scorer, P.W., Söderberg, M., Balcerzak, D., Barker, C.: Relevance of deep learning to facilitate the diagnosis of her2 status in breast cancer. Sci. Rep. 7(1), 1–11 (2017)
Vijayashree, R., Aruthra, P., Rao, K.R.: A comparison of manual and automated methods of quantitation of oestrogen/progesterone receptor expression in breast carcinoma. J. Clin. Diagn. Res.: JCDR 9(3), EC01 (2015)
Wolff, A.C., Hammond, M.E.H., Schwartz, J.N., Hagerty, K.L., Allred, D.C., Cote, R.J., Dowsett, M., Fitzgibbons, P.L., Hanna, W.M., Langer, A., et al.: American society of clinical oncology/college of american pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 131(1), 18–43 (2007)
Xing, F., Su, H., Neltner, J., Yang, L.: Automatic ki-67 counting using robust cell detection and online dictionary learning. IEEE Trans. Biomed. Eng. 61(3), 859–870 (2013)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Niyas, S., Priya, S., Oswal, R., Mathew, T., Kini, J.R., Rajan, J. (2023). Automated Molecular Subtyping of Breast Cancer Through Immunohistochemistry Image Analysis. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_3
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)