Skip to main content

Automated Molecular Subtyping of Breast Cancer Through Immunohistochemistry Image Analysis

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

  • 807 Accesses

Abstract

Molecular subtyping has a significant role in cancer prognosis and targeted therapy. However, the prevalent manual procedure for this has disadvantages, such as deficit of medical experts, inter-observer variability, and high time consumption. This paper suggests a novel approach to automate molecular subtyping of breast cancer using an end-to-end deep learning model. Immunohistochemistry (IHC) images of the tumor tissues are analyzed using a three-stage system to determine the subtype. A modified Res-UNet CNN architecture is used in the first stage to segregate the biomarker responses. This is followed by using a CNN classifier to determine the status of the four biomarkers. Finally, the biomarker statuses are combined to determine the specific subtype of breast cancer. For each IHC biomarker, the performance of segmentation models is analyzed qualitatively and quantitatively. In addition, the patient-level biomarker prediction results are also assessed. The findings of the suggested technique demonstrate the potential of computer-aided techniques to diagnose the subtypes of breast cancer. The proposed automated molecular subtyping approach can accelerate pathology procedures, considerably reduce pathologists’ workload, and minimize the overall cost and time required for diagnosis and treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abubakar, M., Howat, W.J., Daley, F., Zabaglo, L., McDuffus, L.A., Blows, F., Coulson, P., Raza Ali, H., Benitez, J., Milne, R., et al.: High-throughput automated scoring of ki67 in breast cancer tissue microarrays from the breast cancer association consortium. J. Pathol. Clin. Res. 2(3), 138–153 (2016)

    Article  Google Scholar 

  2. Gerdes, J., Li, L., Schlueter, C., Duchrow, M., Wohlenberg, C., Gerlach, C., Stahmer, I., Kloth, S., Brandt, E., Flad, H.D.: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody ki-67. Am. J. Pathol. 138(4), 867 (1991)

    Google Scholar 

  3. Goldhirsch, A., Winer, E.P., Coates, A., Gelber, R., Piccart-Gebhart, M., Thürlimann, B., Senn, H.J., Albain, K.S., André, F., Bergh, J., et al.: Personalizing the treatment of women with early breast cancer: highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 24(9), 2206–2223 (2013)

    Article  Google Scholar 

  4. Hall, B.H., Ianosi-Irimie, M., Javidian, P., Chen, W., Ganesan, S., Foran, D.J.: Computer-assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls. BMC Med. Imaging 8(1), 1–13 (2008)

    Article  Google Scholar 

  5. Jamaluddin, M.F., Fauzi, M.F., Abas, F.S., Lee, J.T., Khor, S.Y., Teoh, K.H., Looi, L.M.: Cell classification in er-stained whole slide breast cancer images using convolutional neural network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 632–635. IEEE (2018)

    Google Scholar 

  6. KHAN NIAZI, M.K., Yearsley, M.M., Zhou, X., Frankel, W.L., Gurcan, M.N.: Perceptual clustering for automatic hotspot detection from ki-67-stained neuroendocrine tumour images. J. Microsc. 256(3), 213–225 (2014)

    Google Scholar 

  7. Konsti, J., Lundin, M., Joensuu, H., Lehtimäki, T., Sihto, H., Holli, K., Turpeenniemi-Hujanen, T., Kataja, V., Sailas, L., Isola, J., et al.: Development and evaluation of a virtual microscopy application for automated assessment of ki-67 expression in breast cancer. BMC Clin. Pathol. 11(1), 1–11 (2011)

    Article  Google Scholar 

  8. Kornegoor, R., Verschuur-Maes, A.H., Buerger, H., Hogenes, M.C., De Bruin, P.C., Oudejans, J.J., Van Der Groep, P., Hinrichs, B., Van Diest, P.J.: Molecular subtyping of male breast cancer by immunohistochemistry. Mod. Pathol. 25(3), 398–404 (2012)

    Article  Google Scholar 

  9. Lakshmi, S., Vijayasenan, D., Sumam, D.S., Sreeram, S., Suresh, P.K.: An integrated deep learning approach towards automatic evaluation of ki-67 labeling index. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON). pp. 2310–2314. IEEE (2019)

    Google Scholar 

  10. Lloyd, M.C., Allam-Nandyala, P., Purohit, C.N., Burke, N., Coppola, D., Bui, M.M.: Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it? J. Pathol. Inform. 1 (2010)

    Google Scholar 

  11. Mathew, T., Niyas, S., Johnpaul, C., Kini, J.R., Rajan, J.: A novel deep classifier framework for automated molecular subtyping of breast carcinoma using immunohistochemistry image analysis. Biomed. Signal Process. Control 76, 103657 (2022)

    Article  Google Scholar 

  12. Mofidi, R., Walsh, R., Ridgway, P., Crotty, T., McDermott, E., Keaveny, T., Duffy, M., Hill, A., O’Higgins, N.: Objective measurement of breast cancer oestrogen receptor status through digital image analysis. Eur. J. Surg. Oncol. (EJSO) 29(1), 20–24 (2003)

    Article  Google Scholar 

  13. Mouelhi, A., Sayadi, M., Fnaiech, F.: A novel morphological segmentation method for evaluating estrogen receptors’ status in breast tissue images. In: 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). pp. 177–182. IEEE (2014)

    Google Scholar 

  14. Niyas, S., Vaisali, S.C., Show, I., Chandrika, T., Vinayagamani, S., Kesavadas, C., Rajan, J.: Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3d convolutional neural networks. Biomed. Signal Process. Control 70, 102951 (2021)

    Article  Google Scholar 

  15. Oscanoa, J., Doimi, F., Dyer, R., Araujo, J., Pinto, J., Castaneda, B.: Automated segmentation and classification of cell nuclei in immunohistochemical breast cancer images with estrogen receptor marker. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2399–2402. IEEE (2016)

    Google Scholar 

  16. Perez, E.A., Cortés, J., Gonzalez-Angulo, A.M., Bartlett, J.M.: Her2 testing: current status and future directions. Cancer Treat. Rev. 40(2), 276–284 (2014)

    Article  Google Scholar 

  17. Pitkäaho, T., Lehtimäki, T.M., McDonald, J., Naughton, T.J., et al.: Classifying her2 breast cancer cell samples using deep learning. In: Proc. Irish Mach. Vis. Image Process. Conf., 1–104 (2016)

    Google Scholar 

  18. Rexhepaj, E., Brennan, D.J., Holloway, P., Kay, E.W., McCann, A.H., Landberg, G., Duffy, M.J., Jirstrom, K., Gallagher, W.M.: Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer. Breast Cancer Res. 10(5), 1–10 (2008)

    Article  Google Scholar 

  19. Saha, M., Arun, I., Ahmed, R., Chatterjee, S., Chakraborty, C.: Hscorenet: A deep network for estrogen and progesterone scoring using breast ihc images. Pattern Recogn. 102, 107200 (2020)

    Article  Google Scholar 

  20. Saha, M., Chakraborty, C.: Her2net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process. 27(5), 2189–2200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saha, M., Chakraborty, C., Arun, I., Ahmed, R., Chatterjee, S.: An advanced deep learning approach for ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  22. Shi, P., Zhong, J., Hong, J., Huang, R., Wang, K., Chen, Y.: Automated ki-67 quantification of immunohistochemical staining image of human nasopharyngeal carcinoma xenografts. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  23. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  24. Tuominen, V.J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M., Isola, J.: Immunoratio: a publicly available web application for quantitative image analysis of estrogen receptor (er), progesterone receptor (pr), and ki-67. Breast Cancer Res. 12(4), 1–12 (2010)

    Article  Google Scholar 

  25. Tuominen, V.J., Tolonen, T.T., Isola, J.: Immunomembrane: a publicly available web application for digital image analysis of her2 immunohistochemistry. Histopathology 60(5), 758–767 (2012)

    Article  Google Scholar 

  26. Vandenberghe, M.E., Scott, M.L., Scorer, P.W., Söderberg, M., Balcerzak, D., Barker, C.: Relevance of deep learning to facilitate the diagnosis of her2 status in breast cancer. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  27. Vijayashree, R., Aruthra, P., Rao, K.R.: A comparison of manual and automated methods of quantitation of oestrogen/progesterone receptor expression in breast carcinoma. J. Clin. Diagn. Res.: JCDR 9(3), EC01 (2015)

    Google Scholar 

  28. Wolff, A.C., Hammond, M.E.H., Schwartz, J.N., Hagerty, K.L., Allred, D.C., Cote, R.J., Dowsett, M., Fitzgibbons, P.L., Hanna, W.M., Langer, A., et al.: American society of clinical oncology/college of american pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 131(1), 18–43 (2007)

    Article  Google Scholar 

  29. Xing, F., Su, H., Neltner, J., Yang, L.: Automatic ki-67 counting using robust cell detection and online dictionary learning. IEEE Trans. Biomed. Eng. 61(3), 859–870 (2013)

    Article  Google Scholar 

  30. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Niyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niyas, S., Priya, S., Oswal, R., Mathew, T., Kini, J.R., Rajan, J. (2023). Automated Molecular Subtyping of Breast Cancer Through Immunohistochemistry Image Analysis. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_3

Download citation

Publish with us

Policies and ethics