Skip to main content

Semi-supervised Semantic Segmentation for Effusion Cytology Images

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

  • 796 Accesses

Abstract

Cytopathologists analyse images captured at different magnifications to detect the malignancies in effusions. They identify the malignant cell clusters from the lower magnification, and the identified area is zoomed in to study cell level details in high magnification. The automatic segmentation of low magnification images saves scanning time and storage requirements. This work predicts the malignancy in the effusion cytology images at low magnification levels such as \(10{\times }\) and 4\(\times \). However, the biggest challenge is the difficulty in annotating the low magnification images, especially the 4\(\times \) data. We extend a semi-supervised learning (SSL) semantic model to train unlabelled 4\(\times \) data with the labelled 10\(\times \) data. The benign F-score on the predictions of 4\(\times \) data using the SSL model is improved 15% compared with the predictions of 4\(\times \) data on the semantic 10\(\times \) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboobacker, S., Vijayasenan, D., David, S.S., Suresh, P.K., Sreeram, S.: A deep learning model for the automatic detection of malignancy in effusion cytology. In: 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–5

    Google Scholar 

  2. Barwad, A., Dey, P., Susheilia, S.: Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology. Cytometry Part B Clin. Cytometry 82(2), 107–111 (2012)

    Article  Google Scholar 

  3. Belsare, A., Mushrif, M.: Histopathological image analysis using image processing techniques: an overview. Signal Image Process. 3(4), 23 (2012)

    Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  5. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  6. Higgins, C.: Applications and challenges of digital pathology and whole slide imaging. Biotech. Histochem. 90(5), 341–347 (2015)

    Article  Google Scholar 

  7. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Jha, D., Smedsrud, P.H., Riegler, M.A., Johansen, D., De Lange, T., Halvorsen, P., Johansen, H.D.: Resunet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255. IEEE (2019)

    Google Scholar 

  9. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop Challenges Representation Learn., ICML. vol. 3, p. 896 (2013)

    Google Scholar 

  10. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  11. Samuli, L., Timo, A.: Temporal ensembling for semi-supervised learning. In: Proceedings of International Conference on Learning Representations (ICLR), vol. 4, p. 6 (2017)

    Google Scholar 

  12. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  13. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015)

    Article  Google Scholar 

  14. Ta, V.T., Lezoray, O., Elmoataz, A., Schüpp, S.: Graph-based tools for microscopic cellular image segmentation. Pattern Recognit. 42(6), 1113–1125 (2009)

    Article  Google Scholar 

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Teramoto, A., Yamada, A., Kiriyama, Y., Tsukamoto, T., Yan, K., Zhang, L., Imaizumi, K., Saito, K., Fujita, H.: Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Inform. Med. Unlocked 16, 100205 (2019)

    Article  Google Scholar 

  17. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Win, K., Choomchuay, S., Hamamoto, K., Raveesunthornkiat, M.: Detection and classification of overlapping cell nuclei in cytology effusion images using a double-strategy random forest. Appl. Sci. 8(9), 1608 (2018)

    Article  Google Scholar 

  19. Win, K.Y., Choomchuay, S., Hamamoto, K., Raveesunthornkiat, M., Rangsirattanakul, L., Pongsawat, S.: Computer aided diagnosis system for detection of cancer cells on cytological pleural effusion images. BioMed. Res. Int. (2018)

    Google Scholar 

  20. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  21. Zeiser, F.A., da Costa, C.A., de Oliveira Ramos, G., Bohn, H.C., Santos, I., Roehe, A.V.: Deepbatch: a hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images. Exp. Syst. Appl. 185, 115586 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Vijayasenan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aboobacker, S., Vijayasenan, D., David, S.S., Suresh, P.K., Sreeram, S. (2023). Semi-supervised Semantic Segmentation for Effusion Cytology Images. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_34

Download citation

Publish with us

Policies and ethics