Skip to main content

Local DCT-Based Deep Learning Architecture for Image Forgery Detection

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

A convolutional neural network model efficient in forgery detection in images regardless of the type of forgery is proposed. The AC coefficients in the block DCT of the entire image are analysed for the suspected forgery operation. The feature vector is extracted from the non-overlapping blocks of size \(8\) \(\,\times \,\) \(8\) of the image. It consists of the standard deviation and non-zero counts of the block DCT coefficients of the image and its cropped version. The image is first converted to YCbCr colour space. The feature vector is extracted for all three channels. We then supply this feature vector as input to the deep neural network for detection. We have trained the DNN using CASIAv1 and CASIAv2 datasets separately and tested them. The train test ratio used is 80:20 for experimentation. Experimentation results on standard datasets, namely CASIA v1 and CASIA v2, reveal the efficiency of the proposed approach. A comparison with some of the existing approaches shows the proposed approach’s performance in terms of detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gani, G., Qadir, F.: A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata. J. Inf. Secur. Appl. (2020). [Elsevier]

    Google Scholar 

  2. Cao, Y., Gao, T., Fan, L., Yang, Q.: A robust detection algorithm for copy-move forgery in digital images. Forensic Sci. Int. (2012). [Elsevier]

    Google Scholar 

  3. He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recogn. (2012). [Elsevier]

    Google Scholar 

  4. Li, C., Ma, Q., Xiao, L., Li, M., Zhang, A.: Image splicing detection based on Markov features in QDCT domain. Neurocomputing (2017). [Elsevier]

    Google Scholar 

  5. Dong, J., Wang, W., Tan, T.: Casia image tampering detection evaluation database. In: 2013 IEEE China Summit and International Conference on Signal and Information Processing, IEEE (2013)

    Google Scholar 

  6. Muhammad, G., Al-Hammadi, M.H., Hussain, M., Bebis, G.: Images forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. (2014). [Springer]

    Google Scholar 

  7. Amani, A., Hussain, M., Hatim, A., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. (2017). [Springer]

    Google Scholar 

  8. Vidyadharan, D.S., Thampi, S.M.: Digital image forgery detection using compact multi-texture representation. J. Intell. Fuzzy Syst. (2017). [IOS Press]

    Google Scholar 

  9. Prakash, C.S., Kumar, A., Maheshkar, S., Maheshkar, V.: An integrated method of copy-move and splicing for image forgery detection. Multimedia Tools Appl. (2018). [Springer]

    Google Scholar 

  10. Saleh, S.Q., Hussain, M., Muhammad, G., Bebis, G.: Evaluation of image forgery detection using multi-scale weber local descriptors. In: International Symposium on Visual Computing, Springer (2013)

    Google Scholar 

  11. Dua, S., Singh, J., Harish, P.: Image forgery detection based on statistical features of block DCT coefficients. Procedia Comput. Sci. (2020). [Elsevier]

    Google Scholar 

  12. Kuznetsov, A.: Digital image forgery detection using deep learning approach. J. Phys. Conf. Ser. 1368, 032028 (2019)

    Article  Google Scholar 

  13. Ali, S.S., Ganapathi, I.I., Vu, N.-S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics (2022)

    Google Scholar 

  14. Sudiatmika, I.B.K., Rahman, F., Trisno, T.: Image forgery detection using error level analysis and deep learning. TELKOMNIKA Telecommun. Comput. Electron, Control (2018)

    Google Scholar 

  15. Rao, Y., Ni, J., Xiea, H.: Multi-semantic CRF-based attention model for image forgery detection and localization. Signal Process. (2021). [Elsevier]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wincy Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shekar, B.H., Abraham, W., Pilar, B. (2023). Local DCT-Based Deep Learning Architecture for Image Forgery Detection. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_37

Download citation

Publish with us

Policies and ethics