Abstract
A convolutional neural network model efficient in forgery detection in images regardless of the type of forgery is proposed. The AC coefficients in the block DCT of the entire image are analysed for the suspected forgery operation. The feature vector is extracted from the non-overlapping blocks of size \(8\) \(\,\times \,\) \(8\) of the image. It consists of the standard deviation and non-zero counts of the block DCT coefficients of the image and its cropped version. The image is first converted to YCbCr colour space. The feature vector is extracted for all three channels. We then supply this feature vector as input to the deep neural network for detection. We have trained the DNN using CASIAv1 and CASIAv2 datasets separately and tested them. The train test ratio used is 80:20 for experimentation. Experimentation results on standard datasets, namely CASIA v1 and CASIA v2, reveal the efficiency of the proposed approach. A comparison with some of the existing approaches shows the proposed approach’s performance in terms of detection accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gani, G., Qadir, F.: A robust copy-move forgery detection technique based on discrete cosine transform and cellular automata. J. Inf. Secur. Appl. (2020). [Elsevier]
Cao, Y., Gao, T., Fan, L., Yang, Q.: A robust detection algorithm for copy-move forgery in digital images. Forensic Sci. Int. (2012). [Elsevier]
He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recogn. (2012). [Elsevier]
Li, C., Ma, Q., Xiao, L., Li, M., Zhang, A.: Image splicing detection based on Markov features in QDCT domain. Neurocomputing (2017). [Elsevier]
Dong, J., Wang, W., Tan, T.: Casia image tampering detection evaluation database. In: 2013 IEEE China Summit and International Conference on Signal and Information Processing, IEEE (2013)
Muhammad, G., Al-Hammadi, M.H., Hussain, M., Bebis, G.: Images forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. (2014). [Springer]
Amani, A., Hussain, M., Hatim, A., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. (2017). [Springer]
Vidyadharan, D.S., Thampi, S.M.: Digital image forgery detection using compact multi-texture representation. J. Intell. Fuzzy Syst. (2017). [IOS Press]
Prakash, C.S., Kumar, A., Maheshkar, S., Maheshkar, V.: An integrated method of copy-move and splicing for image forgery detection. Multimedia Tools Appl. (2018). [Springer]
Saleh, S.Q., Hussain, M., Muhammad, G., Bebis, G.: Evaluation of image forgery detection using multi-scale weber local descriptors. In: International Symposium on Visual Computing, Springer (2013)
Dua, S., Singh, J., Harish, P.: Image forgery detection based on statistical features of block DCT coefficients. Procedia Comput. Sci. (2020). [Elsevier]
Kuznetsov, A.: Digital image forgery detection using deep learning approach. J. Phys. Conf. Ser. 1368, 032028 (2019)
Ali, S.S., Ganapathi, I.I., Vu, N.-S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics (2022)
Sudiatmika, I.B.K., Rahman, F., Trisno, T.: Image forgery detection using error level analysis and deep learning. TELKOMNIKA Telecommun. Comput. Electron, Control (2018)
Rao, Y., Ni, J., Xiea, H.: Multi-semantic CRF-based attention model for image forgery detection and localization. Signal Process. (2021). [Elsevier]
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Shekar, B.H., Abraham, W., Pilar, B. (2023). Local DCT-Based Deep Learning Architecture for Image Forgery Detection. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_37
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_37
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)