Skip to main content

Video Anomaly Detection for Pedestrian Surveillance

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

With the increase in video surveillance technology, modern human beings have more viable options to enhance safety, security, and monitoring. Automatic video surveillance is an option that provides remote monitoring with little human effort and is a computer vision task. There is no end to the applications of automatic video surveillance such as traffic monitoring, theft detection, fight detection. These are important in various places like industrial, residential and official buildings, roads, and many more. The key objective of the present study is to monitor the pedestrian streets and to provide safety and security by identifying anomalous events. However, tracking an anomalous event in itself is a tricky task because of changes in the definition of an anomaly in different scenarios. In this research, high-level features are used to enhance anomaly detection performance using an auto-encoder model. The features are derived from the pre-trained models, and the contextual properties are derived from the extracted features. The datasets used for anomaly detection on the pedestrian streets are UCSD Pedestrian Street Peds1 and Peds2. The performance is evaluated on the Receiver Operating Characteristic (ROC) curve, Area under Curve (AUC), Precision-Recall curve, Average Precision, and Equal Error Rate (EER) value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, K., Sun, T., Jiang, X.: Video anomaly detection and localization based on an adaptive intra-frame classification network. IEEE Trans. Multimed. 22(2), 394–406 (2019). https://doi.org/10.1109/TMM.2019.2929931

    Article  Google Scholar 

  2. Nagrath, P., Dwivedi, S., Negi, R., & Singh, N. Real-Time Anomaly Detection Surveillance System. In: Proceedings of Data Analytics and Management, pp. 665–678 (2022). https://doi.org/10.1007/978-981-16-6289-8_54

  3. Franklin, R. J., Dabbagol, V.: Anomaly detection in videos for video surveillance applications using neural networks. In: 2020 Fourth International Conference on Inventive Systems and Control (ICISC), pp. 632–637 (2020). https://doi.org/10.1109/ICISC47916.2020.9171212

  4. Ahmad, S., Purdy, S.: Real-time anomaly detection for streaming analytics (2016). arXiv preprint arXiv:1607.02480. https://doi.org/10.48550/arXiv.1607.02480

  5. Mehboob, F., Abbas, M., Rauf, A., Khan, S.A., Jiang, R.: Video surveillance-based intelligent traffic management in smart cities. In: Intelligent Video Surveillance, p. 19 (2019).

    Google Scholar 

  6. Parkyns, D.J., Bozzo, M.: CCTV Camera sharing for improved traffic monitoring. In: IET Road Transport Information and Control Conference and the ITS United Kingdom Members’ Conference (RTIC 2008), Manchester, UK (2008). https://doi.org/10.1049/ic.2008.0771

  7. Baran, R., Rusc, T., Fornalski, P.: A smart camera for the surveillance of vehicles in intelligent transportation systems. Multimed. Tools Appl. 75(17), 10471–10493 (2016). https://doi.org/10.1007/s11042-015-3151-y

  8. Nee, J., Hallenbeck, M.E., Briglia, P.: Surveillance Options for Monitoring Arterial Traffic Conditions (No. WA-RD 510.1). Washington State Department of Transportation (2001).

    Google Scholar 

  9. Komagal, E., Yogameena, B.: Foreground segmentation with PTZ camera: a survey. Multimed. Tools Appl. 77(17), 22489–22542 (2018). https://doi.org/10.1007/s11042-018-6104-4

  10. Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-Tilt-Zoom Camera Networks, pp. 189–211 (2009).

    Google Scholar 

  11. de Carvalho, G.H., Thomaz, L.A., da Silva, A.F., da Silva, E.A., Netto, S.L.: Anomaly detection with a moving camera using multiscale video analysis. Multidimens. Syst. Sign. Process. 30(1), 311–342 (2019). https://doi.org/10.1007/s11045-018-0558-4

  12. Ren, J., Chen, Y., Xin, L., Shi, J.: Lane detection in video-based intelligent transportation monitoring via fast extracting and clustering of vehicle motion trajectories. Math. Probl. Eng. 2014(156296), 1–12 (2014). https://doi.org/10.1155/2014/156296

    Article  Google Scholar 

  13. Paul, M., Haque, S.M., Chakraborty, S.: Human detection in surveillance videos and its applications—a review. EURASIP J. Adv. Sign. Process. 2013(176), 1–16 (2013). https://doi.org/10.1186/1687-6180-2013-176

    Article  Google Scholar 

  14. Zhu, Y.Y., Zhu, Y.Y., Zhen-Kun, W., Chen, W.S., Huang, Q.: Detection and recognition of abnormal running behavior in surveillance video. Math. Probl. Eng. 2012(296407), 1–14 (2012). https://doi.org/10.1155/2012/296407

    Article  MATH  Google Scholar 

  15. Tu, N.A., Wong, K.S., Demirci, M.F., Lee, Y.K.: Toward efficient and intelligent video analytics with visual privacy protection for large-scale surveillance. J. Supercomput. 77(12), 14374–14404 (2021). https://doi.org/10.1007/s11227-021-03865-7

  16. Zhang, G., Xu, B., Liu, E., Xu, L., Zheng, L.: Task placement for crowd recognition in edge-cloud based urban intelligent video systems. Clust. Comput. 25(1), 249–262 (2022). https://doi.org/10.1007/s10586-021-03392-3

    Article  Google Scholar 

  17. Cong, Y., Yuan, J., Tang, Y.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013). https://doi.org/10.1109/TIFS.2013.2272243

    Article  Google Scholar 

  18. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020). https://doi.org/10.1177/0278364920917446

    Article  Google Scholar 

  19. Zunino, A., Cavazza, J., Volpi, R., Morerio, P., Cavallo, A., Becchio, C., Murino, V.: Predicting intentions from motion: the subject-adversarial adaptation approach. Int. J. Comp. Vis. 128(1), 220–239 (2020). https://doi.org/10.1007/s11263-019-01234-9

  20. Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehavior prediction for autonomous driving systems. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp. 359–371 (2020). https://doi.org/10.1145/3377811.3380353

  21. Hildmann, H., Kovacs, E.: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response civil security and public safety. Drones 3(3), 59 (2019). https://doi.org/10.3390/drones3030059

    Article  Google Scholar 

  22. Mogren, O.: C-RNN-GAN: Continuous Recurrent Neural Networks with Adversarial Training (2016). arXiv preprint arXiv:1611.09904. https://doi.org/10.48550/arXiv.1611.09904

  23. Li, S., Fang, J., Xu, H., Xue, J.: Video frame prediction by deep multi-branch mask network. IEEE Trans. Circuits Syst. Video Technol. 31(4), 1283–1295 (2020). https://doi.org/10.1109/TCSVT.2020.2984783

    Article  Google Scholar 

  24. Kushwah, R., Batra, P.K., Jain, A.: Internet of things architectural elements, challenges and future directions. In: 2020 6th International Conference on Signal Processing and Communication (ICSC), pp. 1–5 (2020). https://doi.org/10.1109/ICSC48311.2020.9182773

  25. Lavin, A., Ahmad, S.: Evaluating Real-Time Anomaly Detection Algorithms—The Numenta Anomaly Benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, pp. 38–44 (2015). https://doi.org/10.1109/ICMLA.2015.141

  26. Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: Anomalynet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14(10), 2537–2550 (2019). https://doi.org/10.1109/TIFS.2019.2900907

    Article  Google Scholar 

  27. Serrano, I., Deniz, O., Espinosa-Aranda, J.L., Bueno, G.: Fight recognition in video using hough forests and 2D convolutional neural network. IEEE Trans. Image Process. 27(10), 4787–4797 (2018). https://doi.org/10.1109/TIP.2018.2845742

    Article  MathSciNet  MATH  Google Scholar 

  28. Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7842–7851 (2019).

    Google Scholar 

  29. Yadav, A.K., Jain, A., Lara, J.L.M., Yadav, D.: Retinal blood vessel segmentation using convolutional neural networks. In: Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021), Vol. 1: KDIR, pp. 292–298 (2021). https://doi.org/10.5220/0010719500003064

  30. Siddiqui, F., Gupta, S., Dubey, S., Murtuza, S., Jain, A.: Classification and diagnosis of invasive ductal carcinoma using deep learning. In: 2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence), pp. 242–247 (2020). https://doi.org/10.1109/Confluence47617.2020.9058077

  31. UCSD Anomaly Detection Dataset. Accessed Jan 2022. http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

  32. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft Coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divakar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, D., Jain, A., Asati, S., Yadav, A.K. (2023). Video Anomaly Detection for Pedestrian Surveillance. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_39

Download citation

Publish with us

Policies and ethics