Abstract
With the increase in video surveillance technology, modern human beings have more viable options to enhance safety, security, and monitoring. Automatic video surveillance is an option that provides remote monitoring with little human effort and is a computer vision task. There is no end to the applications of automatic video surveillance such as traffic monitoring, theft detection, fight detection. These are important in various places like industrial, residential and official buildings, roads, and many more. The key objective of the present study is to monitor the pedestrian streets and to provide safety and security by identifying anomalous events. However, tracking an anomalous event in itself is a tricky task because of changes in the definition of an anomaly in different scenarios. In this research, high-level features are used to enhance anomaly detection performance using an auto-encoder model. The features are derived from the pre-trained models, and the contextual properties are derived from the extracted features. The datasets used for anomaly detection on the pedestrian streets are UCSD Pedestrian Street Peds1 and Peds2. The performance is evaluated on the Receiver Operating Characteristic (ROC) curve, Area under Curve (AUC), Precision-Recall curve, Average Precision, and Equal Error Rate (EER) value.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xu, K., Sun, T., Jiang, X.: Video anomaly detection and localization based on an adaptive intra-frame classification network. IEEE Trans. Multimed. 22(2), 394–406 (2019). https://doi.org/10.1109/TMM.2019.2929931
Nagrath, P., Dwivedi, S., Negi, R., & Singh, N. Real-Time Anomaly Detection Surveillance System. In: Proceedings of Data Analytics and Management, pp. 665–678 (2022). https://doi.org/10.1007/978-981-16-6289-8_54
Franklin, R. J., Dabbagol, V.: Anomaly detection in videos for video surveillance applications using neural networks. In: 2020 Fourth International Conference on Inventive Systems and Control (ICISC), pp. 632–637 (2020). https://doi.org/10.1109/ICISC47916.2020.9171212
Ahmad, S., Purdy, S.: Real-time anomaly detection for streaming analytics (2016). arXiv preprint arXiv:1607.02480. https://doi.org/10.48550/arXiv.1607.02480
Mehboob, F., Abbas, M., Rauf, A., Khan, S.A., Jiang, R.: Video surveillance-based intelligent traffic management in smart cities. In: Intelligent Video Surveillance, p. 19 (2019).
Parkyns, D.J., Bozzo, M.: CCTV Camera sharing for improved traffic monitoring. In: IET Road Transport Information and Control Conference and the ITS United Kingdom Members’ Conference (RTIC 2008), Manchester, UK (2008). https://doi.org/10.1049/ic.2008.0771
Baran, R., Rusc, T., Fornalski, P.: A smart camera for the surveillance of vehicles in intelligent transportation systems. Multimed. Tools Appl. 75(17), 10471–10493 (2016). https://doi.org/10.1007/s11042-015-3151-y
Nee, J., Hallenbeck, M.E., Briglia, P.: Surveillance Options for Monitoring Arterial Traffic Conditions (No. WA-RD 510.1). Washington State Department of Transportation (2001).
Komagal, E., Yogameena, B.: Foreground segmentation with PTZ camera: a survey. Multimed. Tools Appl. 77(17), 22489–22542 (2018). https://doi.org/10.1007/s11042-018-6104-4
Bimbo, A.D., Dini, F., Pernici, F., Grifoni, A.: Pan-Tilt-Zoom Camera Networks, pp. 189–211 (2009).
de Carvalho, G.H., Thomaz, L.A., da Silva, A.F., da Silva, E.A., Netto, S.L.: Anomaly detection with a moving camera using multiscale video analysis. Multidimens. Syst. Sign. Process. 30(1), 311–342 (2019). https://doi.org/10.1007/s11045-018-0558-4
Ren, J., Chen, Y., Xin, L., Shi, J.: Lane detection in video-based intelligent transportation monitoring via fast extracting and clustering of vehicle motion trajectories. Math. Probl. Eng. 2014(156296), 1–12 (2014). https://doi.org/10.1155/2014/156296
Paul, M., Haque, S.M., Chakraborty, S.: Human detection in surveillance videos and its applications—a review. EURASIP J. Adv. Sign. Process. 2013(176), 1–16 (2013). https://doi.org/10.1186/1687-6180-2013-176
Zhu, Y.Y., Zhu, Y.Y., Zhen-Kun, W., Chen, W.S., Huang, Q.: Detection and recognition of abnormal running behavior in surveillance video. Math. Probl. Eng. 2012(296407), 1–14 (2012). https://doi.org/10.1155/2012/296407
Tu, N.A., Wong, K.S., Demirci, M.F., Lee, Y.K.: Toward efficient and intelligent video analytics with visual privacy protection for large-scale surveillance. J. Supercomput. 77(12), 14374–14404 (2021). https://doi.org/10.1007/s11227-021-03865-7
Zhang, G., Xu, B., Liu, E., Xu, L., Zheng, L.: Task placement for crowd recognition in edge-cloud based urban intelligent video systems. Clust. Comput. 25(1), 249–262 (2022). https://doi.org/10.1007/s10586-021-03392-3
Cong, Y., Yuan, J., Tang, Y.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013). https://doi.org/10.1109/TIFS.2013.2272243
Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020). https://doi.org/10.1177/0278364920917446
Zunino, A., Cavazza, J., Volpi, R., Morerio, P., Cavallo, A., Becchio, C., Murino, V.: Predicting intentions from motion: the subject-adversarial adaptation approach. Int. J. Comp. Vis. 128(1), 220–239 (2020). https://doi.org/10.1007/s11263-019-01234-9
Stocco, A., Weiss, M., Calzana, M., Tonella, P.: Misbehavior prediction for autonomous driving systems. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp. 359–371 (2020). https://doi.org/10.1145/3377811.3380353
Hildmann, H., Kovacs, E.: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response civil security and public safety. Drones 3(3), 59 (2019). https://doi.org/10.3390/drones3030059
Mogren, O.: C-RNN-GAN: Continuous Recurrent Neural Networks with Adversarial Training (2016). arXiv preprint arXiv:1611.09904. https://doi.org/10.48550/arXiv.1611.09904
Li, S., Fang, J., Xu, H., Xue, J.: Video frame prediction by deep multi-branch mask network. IEEE Trans. Circuits Syst. Video Technol. 31(4), 1283–1295 (2020). https://doi.org/10.1109/TCSVT.2020.2984783
Kushwah, R., Batra, P.K., Jain, A.: Internet of things architectural elements, challenges and future directions. In: 2020 6th International Conference on Signal Processing and Communication (ICSC), pp. 1–5 (2020). https://doi.org/10.1109/ICSC48311.2020.9182773
Lavin, A., Ahmad, S.: Evaluating Real-Time Anomaly Detection Algorithms—The Numenta Anomaly Benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, pp. 38–44 (2015). https://doi.org/10.1109/ICMLA.2015.141
Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: Anomalynet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14(10), 2537–2550 (2019). https://doi.org/10.1109/TIFS.2019.2900907
Serrano, I., Deniz, O., Espinosa-Aranda, J.L., Bueno, G.: Fight recognition in video using hough forests and 2D convolutional neural network. IEEE Trans. Image Process. 27(10), 4787–4797 (2018). https://doi.org/10.1109/TIP.2018.2845742
Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7842–7851 (2019).
Yadav, A.K., Jain, A., Lara, J.L.M., Yadav, D.: Retinal blood vessel segmentation using convolutional neural networks. In: Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021), Vol. 1: KDIR, pp. 292–298 (2021). https://doi.org/10.5220/0010719500003064
Siddiqui, F., Gupta, S., Dubey, S., Murtuza, S., Jain, A.: Classification and diagnosis of invasive ductal carcinoma using deep learning. In: 2020 10th International Conference on Cloud Computing, Data Science and Engineering (Confluence), pp. 242–247 (2020). https://doi.org/10.1109/Confluence47617.2020.9058077
UCSD Anomaly Detection Dataset. Accessed Jan 2022. http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft Coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yadav, D., Jain, A., Asati, S., Yadav, A.K. (2023). Video Anomaly Detection for Pedestrian Surveillance. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_39
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_39
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)