Abstract
The issues caused due to image manipulations are common these days. Furthermore, it causes severe troubles in news broadcasting, social media, and digital media forensics. Mainly, the types of image manipulations are divided into four; they are splice forgery, copy-move, morphing, and retouching. Among them, copy-move forgery is one of the most challenging manipulations to detect since it does not change image characteristics while performing the copy-move forgery operation. In this paper, we propose a copy-move forgery detection and localization scheme that detect forgery regions in the image even though the forgery image undergoes translation, scaling, and rotation attacks. The scheme uses the SIFT algorithm for keypoints extraction from the forgery image, DBSCAN to cluster these keypoints, and Hu’s invariant moments are used to identify similarity between two suspicious regions in the image. Lastly, a region growing is performed around these detected regions to localize copy-move forgery regions. The scheme has experimented with a CoMoFoD dataset which is publicly available, and the result shows that the proposed scheme outperforms the state-of-the-art non-deep learning-based copy-move forgery techniques in terms of recall, FNR, F1-score, and also in computational time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hrudya, P., Nair, L.S., Adithya, S.M., Unni, S.M.,Poornachandran, P.: Digital image forgery detection on artificially blurred images. In: 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), pp. 1–5 (2013). 10.1109/C2SPCA.2013.6749392
Menon, S.S., Mary Saana, N.J., Deepa, G.: Image forgery detection using hash functions, vol. 8 (2019)
Abidin, A.B.Z., Majid, H.B.A., Samah, A.B.A., Hashim, H.B.: Copy-move image forgery detection using deep learning methods: a review, vol. 2019 (2019, December). 10.1109/ICRIIS48246.2019.9073569
Gopal, D., G, G.: A deep learning approach to image splicing using depth map*. ICADCML (2022)
Lu, S., Hu, X., Wang, C., Chen, L., Han, S., Han, Y.: Copy-move image forgery detection based on evolving circular domains coverage. Multimedia Tools Appl. 1–26 (2022)
Nair, G.S., Gitanjali Nambiar, C., Rajith, N., Nanda, K., Nair, J.J.: Copy-move forgery detection using beblid features and dct. In: Innovations in Computational Intelligence and Computer Vision, pp. 409–417. Springer, Berlin (2022)
Narayanan, S.S., Gopakumar, G.: Recursive block based keypoint matching for copy move image forgery detection. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6 (2020). 10.1109/ICCCNT49239.2020.9225658
Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Serra, G.: A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6 (2011). 10.1109/TIFS.2011.2129512
Wu, Y., Abd-Almageed, W., Natarajan, P.: Busternet: detecting copy-move image forgery with source/target localization, vol. 11210. LNCS (2018)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226–231 (1996)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. 8 (1962). 10.1109/TIT.1962.1057692
Tian, X., Zhou, G., Xu, M.: Image copy-move forgery detection algorithm based on orb and novel similarity metric. IET Image Process. 14 (2020)
Liu, Y., Guan, Q., Zhao, X.: Copy-move forgery detection based on convolutional kernel network (2017). 10.48550/ARXIV.1707.01221, https://arxiv.org/abs/1707.01221
Chen, C.C., Lu, W.Y., Chou, C.H.: Rotational copy-move forgery detection using sift and region growing strategies. Multimedia Tools Appl. 78 (2019)
Lynch, G., Shih, F.Y., Liao, H.Y.M.: An efficient expanding block algorithm for image copy-move forgery detection. Inf. Sci. 239 (2013)
Chen, C.C., Wang, H., Lin, C.S.: An efficiency enhanced cluster expanding block algorithm for copy-move forgery detection. Multimedia Tools Appl. 76 (2017)
Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kalluvilayil Venugopalan, A., Gopakumar, G. (2023). Keypoint-Based Detection and Region Growing-Based Localization of Copy-Move Forgery in Digital Images. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_41
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_41
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)