Abstract
Semantic image segmentation based on deep learning is gaining popularity because it is giving promising results in medical image analysis, automated land categorization, remote sensing, and other computer vision applications. Many algorithms have been designed in recent years, yet there is scope for further improvement in computer vision research. We have proposed a unique ensemble method called Ranking and Nonhierarchical Comparison Ensemble (RNCE) for semantic segmentation of landcover images based on the Ranking and Nonhierarchical Comparison methodology. Our approach has been tested on pretrained models showing improved accuracy and mean IoU with respect to the existing method. The code is available at: https://github.com/vekash2021/RNCE.git.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Song, B., Kang, S.: A method of assigning weights using a ranking and nonhierarchy comparison. Adv. Decis. Sci. 2016, 1–9 (2016). https://doi.org/10.1155/2016/8963214
Li, Q., Zorzi, S., Shi, Y., Fraundorfer, F., Zhu, X.X.: End-to-end semantic segmentation and boundary regularization of buildings from satellite imagery. In: IEEE International Geoscience and Remote Sensing Symposium IGARSS 2021, 2508–2511 (2021). https://doi.org/10.1109/IGARSS47720.2021.9555147
Bao, Y., Zheng, Y.: Based on the improved Deeplabv3+ remote sensing image semantic segmentation algorithm. In: 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), pp. 717–720 (2021). https://doi.org/10.1109/AEMCSE51986.2021.00148
Zeng, X., Chen, I., Liu, P.: Improve semantic segmentation of remote sensing images with K-mean pixel clustering: A semantic segmentation post-processing method based on k-means clustering. In: 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE), pp. 231–235 (2021). https://doi.org/10.1109/CSAIEE54046.2021.9543336
Heryadi, Y., Soeparno, H., Irwansyah, E., Miranda, E., Hashimoto, K.: The Effect of Resnet Model as Feature Extractor Network to Performance of DeepLabV3 Model for Semantic Satellite Image Segmentation (2021). https://doi.org/10.1109/AGERS51788.2020.9452768
Baghbaderani, R.K., Qi, H.: Incorporating spectral unmixing in satellite imagery semantic segmentation. IEEE International Conference on Image Processing (ICIP) 2019, 2449–2453 (2019). https://doi.org/10.1109/ICIP.2019.8803372
Zhao, F., Zhang, C.: Building damage evaluation from satellite imagery using deep learning. In: 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), pp. 82–89 (2020). https://doi.org/10.1109/IRI49571.2020.00020
Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Building detection in very high resolution multispectral data with deep learning features. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015, 1873–1876 (2015). https://doi.org/10.1109/IGARSS.2015.7326158
Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intel. 12(10), 993–1001 (1990). https://doi.org/10.1109/34.58871
Zuo, Y., Drummond, T.: Fast Residual Forests: Rapid Ensemble Learning for Semantic Segmentation. CoRL (2017)
Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Zambrzycka, A., Dziedzic, T.: LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands and Water from Aerial Imagery (2020)
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 1409.1556 (2014)
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 770–778. https://doi.org/10.1109/CVPR.2016.90
Tan, M., Le, Q. V.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ArXiv abs/1905.11946 (2019)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474
Acknowledgements
This work has been carried out in the Digital Control and Image Processing Lab, ETCE Department, Jadavpur University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kumar, V., Ali, A., Chaudhuri, S.S. (2023). RNCE: A New Image Segmentation Approach. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_44
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_44
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)