Skip to main content

Domain Adaptation: A Survey

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

  • 808 Accesses

Abstract

In computer vision, domain shifts are a typical issue. A classifier that has been trained on a source domain will not be able to perform well on a target domain. As a result, a source classifier taught to discriminate based on a particular distribution will struggle to classify new data from a different distribution. Domain adaptation is a hot area of research due to the plethora of applications available from this technique. Many developments have been made in this direction in recent decades. In light of this, we have compiled a summary of domain adaptation research, concentrating on work done in the last few years (2015–2022) for the benefit of the research community. We have categorically placed the important research works in DA under the chosen methodologies and have critically assessed the performances of these techniques. The study covers these features at length, and thorough descriptions of representative methods for each group are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkhalifah, T., Ovcharenko, O.: Direct Domain Adaptation Through Reciprocal Linear Transformations (2021)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  3. Ashokkumar, P., Don, S.: High dimensional data visualization: a survey. J. Adv. Res. Dyn. Control Syst. 9(12), 851–866 (2017)

    Google Scholar 

  4. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2017)

    Google Scholar 

  5. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. Adv. Neural Inform. Process. Syst. 29 (2016)

    Google Scholar 

  6. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2724–2732 (2018)

    Google Scholar 

  7. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint Distribution Optimal Transportation for Domain Adaptation (2017). arXiv preprint arXiv:1705.08848

  8. Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 447–463 (2018)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  10. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)

    Google Scholar 

  12. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: European Conference on Computer Vision, pp. 597–613. Springer (2016)

    Google Scholar 

  13. Gopika, P., Sowmya, V., Gopalakrishnan, E.A., Soman, K.P.: Transferable approach for cardiac disease classification using deep learning. In: Deep Learning Techniques for Biomedical and Health Informatics, pp. 285–303. Elsevier (2020)

    Google Scholar 

  14. Gressel, G., Hrudya, P., Surendran, K., Thara, S., Aravind, A., Prabaharan, P.: Ensemble learning approach for author profiling. In: Notebook for PAN at CLEF, pp. 401–412 (2014)

    Google Scholar 

  15. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)

    Google Scholar 

  16. Han, Z., Sun, H., Yin, Y.: Learning transferable parameters for unsupervised domain adaptation. IEEE Trans, Image Proces (2022)

    Book  Google Scholar 

  17. Huang, J., Guan, D., Xiao, A., Lu, S., Shao, L.: Category contrast for unsupervised domain adaptation in visual tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1203–1214 (2022)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Liu, M.-Y., Tuzel, O.: Coupled generative adversarial networks. Adv. Neural Inform. Proces. Syst. 29 (2016)

    Google Scholar 

  20. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised Domain Adaptation with Residual Transfer Networks (2016). arXiv preprint arXiv:1602.04433

  22. Murugaraj, B., Amudha, J.: Performance assessment framework for computational models of visual attention. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 345–355. Springer (2017)

    Google Scholar 

  23. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  24. Rahman, M.M., Fookes, C., Baktashmotlagh, M., Sridharan, S.: On minimum discrepancy estimation for deep domain adaptation. In: Domain Adaptation for Visual Understanding, pp. 81–94. Springer (2020)

    Google Scholar 

  25. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: European Conference on Computer Vision, pp. 213–226. Springer (2010)

    Google Scholar 

  26. Sai, B.N.K., Sasikala, T.: Object detection and count of objects in image using tensor flow object detection api. In: 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 542–546. IEEE (2019)

    Google Scholar 

  27. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  28. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation. In: European Conference on Computer Vision, pp. 443–450. Springer (2016)

    Google Scholar 

  29. Tamuly, S., Jyotsna, C., Amudha, J.: Deep learning model for image classification. In: International Conference On Computational Vision and Bio Inspired Computing, pp. 312–320. Springer (2019)

    Google Scholar 

  30. Thampi, S.M., Piramuthu, S., Li, K.-C., Berretti, S., Wozniak, M., Singh, D.: Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, 14–17 Oct 2020, Revised Selected Papers, vol. 1366. Springer Nature (2021)

    Google Scholar 

  31. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  32. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  33. Wang, R., Wu, Z., Weng, Z., Chen, J., Qi, G.-J., Jiang, Y.-G.: Cross-domain contrastive learning for unsupervised domain adaptation. IEEE Trans, Multimed (2022)

    Book  Google Scholar 

  34. Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15242–15251 (2021)

    Google Scholar 

  35. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2272–2281 (2017)

    Google Scholar 

  36. Yan, W., Wang, Y., Gu, S., Huang, L., Yan, F., Xia, L., Tao, Q.: The domain shift problem of medical image segmentation and vendor-adaptation by unet-gan. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 623–631. Springer (2019)

    Google Scholar 

  37. Ye, Y., Pan, T., Meng, Q., Li, J., Tao Shen, H.: Online unsupervised domain adaptation via reducing inter-and intra-domain discrepancies. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashly Ajith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ajith, A., Gopakumar, G. (2023). Domain Adaptation: A Survey. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_47

Download citation

Publish with us

Policies and ethics