Skip to main content

Performance Comparison of HC-SR04 Ultrasonic Sensor and TF-Luna LIDAR for Obstacle Detection

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

Abstract

Obstacle detection is one of the most challenging fields due to the different shapes, sizes, and materials of obstacles. This work provides insight into commonly used obstacle avoidance sensors. The main contribution of this paper is the comparison of the performance of TF-Luna (LIDAR) with an ultrasonic sensor (HC-SR04) to detect various different obstacles. The performance of obstacle avoidance sensors has been evaluated in two different cases. At first, a single object is placed in the vicinity of the sensor, and readings have been taken. In the case of a single object, four different obstacle materials have been considered. The behavior of sensors with respect to multiple objects is also analyzed. An Arduino UNO microcontroller unit is used to collect the data from the sensor. The difference between actual and measured values is used to analyze the data. This analysis will help to select the right sensor for handling the obstacle detection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adarsh, S., Kaleemuddin, S.M., Bose, D., Ramachandran, K.: Performance comparison of infrared and ultrasonic sensors for obstacles of different materials in vehicle/robot navigation applications. In: IOP Conference Series: Materials Science and Engineering. vol. 149, p. 012141. IOP Publishing (2016)

    Google Scholar 

  2. Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: Outcomes. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). vol. 4, pp. 4174–4179. IEEE (2001)

    Google Scholar 

  3. Asvadi, A., Premebida, C., Peixoto, P., Nunes, U.: 3d lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83, 299–311 (2016)

    Article  Google Scholar 

  4. Baxter, J.L., Burke, E., Garibaldi, J.M., Norman, M.: Multi-robot search and rescue: a potential field based approach. In: Autonomous Robots and Agents, pp. 9–16. Springer (2007)

    Google Scholar 

  5. Chang, S., Zhang, Y., Zhang, F., Zhao, X., Huang, S., Feng, Z., Wei, Z.: Spatial attention fusion for obstacle detection using mmwave radar and vision sensor. Sensors 20(4), 956 (2020)

    Article  Google Scholar 

  6. Dewan, A., Caselitz, T., Tipaldi, G.D., Burgard, W.: Motion-based detection and tracking in 3d lidar scans. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4508–4513. IEEE (2016)

    Google Scholar 

  7. Discant, A., Rogozan, A., Rusu, C., Bensrhair, A.: Sensors for obstacle detection-a survey. In: 2007 30th International Spring Seminar on Electronics Technology (ISSE). pp. 100–105. IEEE (2007)

    Google Scholar 

  8. Duchoň, F., Hubinskỳ, P., Hanzel, J., Babinec, A., Tölgyessy, M.: Intelligent vehicles as the robotic applications. Procedia Eng. 48, 105–114 (2012)

    Article  Google Scholar 

  9. Gageik, N., Müller, T., Montenegro, S.: Obstacle detection and collision avoidance using ultrasonic distance sensors for an autonomous quadrocopter, pp. 3–23. Aerospace Information Technologhy, University of Wurzburg, Wurzburg, germany (2012)

    Google Scholar 

  10. Grubb, G., Zelinsky, A., Nilsson, L., Rilbe, M.: 3d vision sensing for improved pedestrian safety. In: IEEE Intelligent Vehicles Symposium, 2004. pp. 19–24. IEEE (2004)

    Google Scholar 

  11. Hutabarat, D., Rivai, M., Purwanto, D., Hutomo, H.: Lidar-based obstacle avoidance for the autonomous mobile robot. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS). pp. 197–202. IEEE (2019)

    Google Scholar 

  12. Ismail, R., Omar, Z., Suaibun, S.: Obstacle-avoiding robot with IR and PIR motion sensors. In: IOP Conference Series: Materials Science and Engineering. vol. 152, p. 012064. IOP Publishing (2016)

    Google Scholar 

  13. Jain, U., Tiwari, R., Godfrey, W.W.: Multiple odor source localization using diverse-PSO and group-based strategies in an unknown environment. J. Comput. Sci. 34, 33–47 (2019)

    Article  Google Scholar 

  14. Jansen, N.: Short range object detection and avoidance. Traineeship Report p. 17 (2010)

    Google Scholar 

  15. Karasulu, B.: Review and evaluation of well-known methods for moving object detection and tracking in videos. J. Aeronaut. Space Technol. 4(4), 11–22 (2010)

    Google Scholar 

  16. Khan, Z.H., Siddique, A., Lee, C.W.: Robotics utilization for healthcare digitization in global covid-19 management. Int. J. Environ. Res. Public Health 17(11), 3819 (2020)

    Article  Google Scholar 

  17. Kumar, A., Patil, P.: Graphic Era University, Dehradun, India (2017)

    Google Scholar 

  18. Kumar, A., Jassal, B.: Remote sensing through millimeter wave radiometer sensor. J. Graph. Era Univ. 47–52 (2019)

    Google Scholar 

  19. Leggieri, S., Canali, C., Caldwell, D.G.: Design of the crawler units: toward the development of a novel hybrid platform for infrastructure inspection. Appl. Sci. 12(11), 5579 (2022)

    Article  Google Scholar 

  20. Li, Q., Dai, B., Fu, H.: Lidar-based dynamic environment modeling and tracking using particles based occupancy grid. In: 2016 IEEE International Conference on Mechatronics and Automation. pp. 238–243. IEEE (2016)

    Google Scholar 

  21. Majchrzak, J., Michalski, M., Wiczynski, G.: Distance estimation with a long-range ultrasonic sensor system. IEEE Sens. J. 9(7), 767–773 (2009)

    Article  Google Scholar 

  22. Mustapha, B., Zayegh, A., Begg, R.K.: Ultrasonic and infrared sensors performance in a wireless obstacle detection system. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation. pp. 487–492. IEEE (2013)

    Google Scholar 

  23. Nanditta, R., Venkatesan, A., Rajkumar, G., .B, N., Das, N.: Autonomous obstacle avoidance robot using IR sensors programmed in Arduino UNO. Int. J. Eng. Res. 8, 2394–6849 (2021)

    Google Scholar 

  24. Qiu, Z., An, D., Yao, D., Zhou, D., Ran, B.: An adaptive Kalman predictor applied to tracking vehicles in the traffic monitoring system. In: IEEE Proceedings. Intelligent Vehicles Symposium, 2005. pp. 230–235. IEEE (2005)

    Google Scholar 

  25. Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)

    Article  Google Scholar 

  26. Shrivastava, A., Verma, A., Singh, S.: Distance measurement of an object or obstacle by ultrasound sensors using p89c51rd2. Int. J. Comput. Theory Eng. 2(1), 64–68 (2010)

    Google Scholar 

  27. Ulloa, C.C., Krus, A., Barrientos, A., Del Cerro, J., Valero, C.: Trend technologies for robotic fertilization process in row crops. Front. Robot. AI 9 (2022)

    Google Scholar 

  28. Villa, J., Aaltonen, J., Koskinen, K.T.: Path-following with lidar-based obstacle avoidance of an unmanned surface vehicle in harbor conditions. IEEE/ASME Trans. Mechatron. 25(4), 1812–1820 (2020)

    Article  Google Scholar 

  29. Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular vision based obstacle avoidance through deep reinforcement learning. arXiv:1706.09829 (2017)

  30. Yılmaz, E., Tarıyan Özyer, S.: Remote and autonomous controlled robotic car based on Arduino with real time obstacle detection and avoidance (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upma Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, U., Kansal, V., Dewangan, R., Dhasmana, G., Kotiyal, A. (2023). Performance Comparison of HC-SR04 Ultrasonic Sensor and TF-Luna LIDAR for Obstacle Detection. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_50

Download citation

Publish with us

Policies and ethics