Abstract
Obstacle detection is one of the most challenging fields due to the different shapes, sizes, and materials of obstacles. This work provides insight into commonly used obstacle avoidance sensors. The main contribution of this paper is the comparison of the performance of TF-Luna (LIDAR) with an ultrasonic sensor (HC-SR04) to detect various different obstacles. The performance of obstacle avoidance sensors has been evaluated in two different cases. At first, a single object is placed in the vicinity of the sensor, and readings have been taken. In the case of a single object, four different obstacle materials have been considered. The behavior of sensors with respect to multiple objects is also analyzed. An Arduino UNO microcontroller unit is used to collect the data from the sensor. The difference between actual and measured values is used to analyze the data. This analysis will help to select the right sensor for handling the obstacle detection problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adarsh, S., Kaleemuddin, S.M., Bose, D., Ramachandran, K.: Performance comparison of infrared and ultrasonic sensors for obstacles of different materials in vehicle/robot navigation applications. In: IOP Conference Series: Materials Science and Engineering. vol. 149, p. 012141. IOP Publishing (2016)
Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: Outcomes. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). vol. 4, pp. 4174–4179. IEEE (2001)
Asvadi, A., Premebida, C., Peixoto, P., Nunes, U.: 3d lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83, 299–311 (2016)
Baxter, J.L., Burke, E., Garibaldi, J.M., Norman, M.: Multi-robot search and rescue: a potential field based approach. In: Autonomous Robots and Agents, pp. 9–16. Springer (2007)
Chang, S., Zhang, Y., Zhang, F., Zhao, X., Huang, S., Feng, Z., Wei, Z.: Spatial attention fusion for obstacle detection using mmwave radar and vision sensor. Sensors 20(4), 956 (2020)
Dewan, A., Caselitz, T., Tipaldi, G.D., Burgard, W.: Motion-based detection and tracking in 3d lidar scans. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4508–4513. IEEE (2016)
Discant, A., Rogozan, A., Rusu, C., Bensrhair, A.: Sensors for obstacle detection-a survey. In: 2007 30th International Spring Seminar on Electronics Technology (ISSE). pp. 100–105. IEEE (2007)
Duchoň, F., Hubinskỳ, P., Hanzel, J., Babinec, A., Tölgyessy, M.: Intelligent vehicles as the robotic applications. Procedia Eng. 48, 105–114 (2012)
Gageik, N., Müller, T., Montenegro, S.: Obstacle detection and collision avoidance using ultrasonic distance sensors for an autonomous quadrocopter, pp. 3–23. Aerospace Information Technologhy, University of Wurzburg, Wurzburg, germany (2012)
Grubb, G., Zelinsky, A., Nilsson, L., Rilbe, M.: 3d vision sensing for improved pedestrian safety. In: IEEE Intelligent Vehicles Symposium, 2004. pp. 19–24. IEEE (2004)
Hutabarat, D., Rivai, M., Purwanto, D., Hutomo, H.: Lidar-based obstacle avoidance for the autonomous mobile robot. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS). pp. 197–202. IEEE (2019)
Ismail, R., Omar, Z., Suaibun, S.: Obstacle-avoiding robot with IR and PIR motion sensors. In: IOP Conference Series: Materials Science and Engineering. vol. 152, p. 012064. IOP Publishing (2016)
Jain, U., Tiwari, R., Godfrey, W.W.: Multiple odor source localization using diverse-PSO and group-based strategies in an unknown environment. J. Comput. Sci. 34, 33–47 (2019)
Jansen, N.: Short range object detection and avoidance. Traineeship Report p. 17 (2010)
Karasulu, B.: Review and evaluation of well-known methods for moving object detection and tracking in videos. J. Aeronaut. Space Technol. 4(4), 11–22 (2010)
Khan, Z.H., Siddique, A., Lee, C.W.: Robotics utilization for healthcare digitization in global covid-19 management. Int. J. Environ. Res. Public Health 17(11), 3819 (2020)
Kumar, A., Patil, P.: Graphic Era University, Dehradun, India (2017)
Kumar, A., Jassal, B.: Remote sensing through millimeter wave radiometer sensor. J. Graph. Era Univ. 47–52 (2019)
Leggieri, S., Canali, C., Caldwell, D.G.: Design of the crawler units: toward the development of a novel hybrid platform for infrastructure inspection. Appl. Sci. 12(11), 5579 (2022)
Li, Q., Dai, B., Fu, H.: Lidar-based dynamic environment modeling and tracking using particles based occupancy grid. In: 2016 IEEE International Conference on Mechatronics and Automation. pp. 238–243. IEEE (2016)
Majchrzak, J., Michalski, M., Wiczynski, G.: Distance estimation with a long-range ultrasonic sensor system. IEEE Sens. J. 9(7), 767–773 (2009)
Mustapha, B., Zayegh, A., Begg, R.K.: Ultrasonic and infrared sensors performance in a wireless obstacle detection system. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation. pp. 487–492. IEEE (2013)
Nanditta, R., Venkatesan, A., Rajkumar, G., .B, N., Das, N.: Autonomous obstacle avoidance robot using IR sensors programmed in Arduino UNO. Int. J. Eng. Res. 8, 2394–6849 (2021)
Qiu, Z., An, D., Yao, D., Zhou, D., Ran, B.: An adaptive Kalman predictor applied to tracking vehicles in the traffic monitoring system. In: IEEE Proceedings. Intelligent Vehicles Symposium, 2005. pp. 230–235. IEEE (2005)
Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)
Shrivastava, A., Verma, A., Singh, S.: Distance measurement of an object or obstacle by ultrasound sensors using p89c51rd2. Int. J. Comput. Theory Eng. 2(1), 64–68 (2010)
Ulloa, C.C., Krus, A., Barrientos, A., Del Cerro, J., Valero, C.: Trend technologies for robotic fertilization process in row crops. Front. Robot. AI 9 (2022)
Villa, J., Aaltonen, J., Koskinen, K.T.: Path-following with lidar-based obstacle avoidance of an unmanned surface vehicle in harbor conditions. IEEE/ASME Trans. Mechatron. 25(4), 1812–1820 (2020)
Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular vision based obstacle avoidance through deep reinforcement learning. arXiv:1706.09829 (2017)
Yılmaz, E., Tarıyan Özyer, S.: Remote and autonomous controlled robotic car based on Arduino with real time obstacle detection and avoidance (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jain, U., Kansal, V., Dewangan, R., Dhasmana, G., Kotiyal, A. (2023). Performance Comparison of HC-SR04 Ultrasonic Sensor and TF-Luna LIDAR for Obstacle Detection. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_50
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_50
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)