Skip to main content

MultiNet: A Multimodal Approach for Biometric Verification

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

Abstract

These days, the safety of personal information has become a matter of great concern for everyone. In this matter, the concept of Multimodal Biometrics has attracted the interest of the researchers because to the ability to solve a number of limitation of uni-modal biometric system. In this paper, we have presented multimodal biometric-based verification system, which is based on convolutional neural network to verify a individual using multi traits biometric modalities, i.e., fingerprint iris by score level fusion. We have achieved 98.8% accuracy over CASIA V fingerprint and iris dataset. Obtained results shows that using two different biometric trait in proposed biometric verification systems achieved better result than single biometric trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Medjahed, C., Rahmoun, A., Charrier, C., Mezzoudj, F.: A deep learning-based multimodal biometric system using score fusion. IAES Int. J. Artif. Intell. 11(1), 65 (2022)

    Google Scholar 

  2. Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 143, 113114 (2020)

    Article  Google Scholar 

  3. Sudhamani, M., Venkatesha, M., Radhika, K.: Fusion at decision level in multimodal biometric authentication system using iris and finger vein with novel feature extraction. In: Annual IEEE India Conference (INDICON), pp. 1–6. IEEE (2014)

    Google Scholar 

  4. Gawande, U., Zaveri, M., Kapur, A.: Fingerprint and iris fusion based recognition using RBF neural network. J. Signal Image Process. 4(1), 142 (2013)

    Google Scholar 

  5. Joseph, T., Kalaiselvan, S., Aswathy, S., Radhakrishnan, R., Shamna, A.: A multimodal biometric authentication scheme based on feature fusion for improving security in cloud environment. J. Ambient Intell. Humanized Comput. 12(6), 6141–6149 (2021)

    Article  Google Scholar 

  6. He, F., Liu, Y., Zhu, X., Huang, C., Han, Y., Chen, Y.: Score level fusion scheme based on adaptive local Gabor features for face-iris-fingerprint multimodal biometric. J. Electron. Imaging 23(3), 033019 (2014)

    Article  Google Scholar 

  7. Ryu, R., Yeom, S., Kim, S.-H., Herbert, D.: Continuous multimodal biometric authentication schemes: a systematic review. IEEE Access 9, 34541–34557 (2021)

    Article  Google Scholar 

  8. Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recogn. Lett. 79, 80–105 (2016)

    Article  Google Scholar 

  9. Khuwaja, G.A.: Merging face and finger images for human identification. Pattern Anal. Appl. 8(1), 188–198 (2005)

    Article  MathSciNet  Google Scholar 

  10. Ammour, B., Boubchir, L., Bouden, T., Ramdani, M.: Face-iris multimodal biometric identification system. Electronics 9(1), 85 (2020)

    Article  Google Scholar 

  11. Radha, N., Kavitha, A.: Rank level fusion using fingerprint and iris biometrics. Indian J. Comput. Sci. Eng. 2(6), 917–923 (2012)

    Google Scholar 

  12. Monwar, M.M., Gavrilova, M.L.: Multimodal biometric system using rank-level fusion approach. IEEE Trans. Syst. Man Cybern. B (Cybern.) 39(4), 867–878 (2009)

    Article  Google Scholar 

  13. Baig, A., Bouridane, A., Kurugollu, F., Qu, G.: Fingerprint-iris fusion based identification system using a single hamming distance matcher. In: Symposium on Bio-inspired Learning and Intelligent Systems for Security, pp. 9–12. IEEE (2009)

    Google Scholar 

  14. Nsaef, A.K., Jaafar, A., Jassim, K.N.: Enhancement segmentation technique for iris recognition system based on daugman’s integro-differential operator. In: International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), vol. 1, pp. 71–75. IEEE (2012)

    Google Scholar 

  15. Minaee, S., Abdolrashidi, A., Wang, Y.: Face recognition using scattering convolutional network. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6. IEEE (2017)

    Google Scholar 

  16. Shekhar, S., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 113–126 (2013)

    Article  Google Scholar 

  17. Vishi, K., Yayilgan, S.Y.: Multimodal biometric authentication using fingerprint and iris recognition in identity management. In: 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 334–341. IEEE (2013)

    Google Scholar 

  18. Mustafa, A.S., Abdulelah, A.J., Ahmed, A.K.: Multimodal biometric system iris and fingerprint recognition based on fusion technique. Int. J. Adv. Sci. Technol. 29, 7423–7432 (2020)

    Google Scholar 

  19. AbuAlghanam, O., Albdour, L., Adwan, O.: Multimodal biometric fusion online handwritten signature verification using neural network and support vector machine. In: Transactions, vol. 7, p. 8 (2021)

    Google Scholar 

  20. Punyani, P., Gupta, R., Kumar, A.: A multimodal biometric system using match score and decision level fusion. Int. J. Inf. Technol. 14(2), 725–730 (2022)

    Google Scholar 

  21. Sarhan, S., Alhassan, S., Elmougy, S.: Multimodal biometric systems: a comparative study. Arab. J. Sci. Eng. 42(2), 443–457 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poorti Sagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagar, P., Jain, A. (2023). MultiNet: A Multimodal Approach for Biometric Verification. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_54

Download citation

Publish with us

Policies and ethics