Skip to main content

MangoYOLO5: A Fast and Compact YOLOv5 Model for Mango Detection

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

Detection of fruits in orchards is crucial for agricultural applications like automatic estimation and mapping of yield. The state-of-the-art approaches for this task are based on hand-crafted features and therefore are liable to variations in a real orchard environment. However, the current deep learning-based one-stage object detection methods like the YOLO provide excellent detection accuracy at the cost of increased computational complexity. So this paper presents an improved, fast, and compact YOLOv5s model named as MangoYOLO5 for detecting mangoes in the images of open mango orchards given by the MangoNet-Semantic dataset. The proposed MangoYOLO5 has adopted a few improvements over YOLOv5s. Firstly, the feedback convolutional layer is removed from the BottleneckCSP module of the original YOLOv5s model, reducing the convolutional layers by 11. Secondly, two convolutional layers, one from the focus module and another just after the focus module, are removed to reduce the overall weight of the architecture. It is observed from precision, recall, and mAP metrics of the experimental results that MangoYOLO5 detection performance is \(3.0\%\) better than the YOLOv5s, addressing several factors such as occlusion, distance, and lighting variations. In addition, the realized lighter model requires \(66.67\%\) less training time as compared to original YOLOv5s, which can significantly affect its real-time implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullagaddi, S., Raju, S.V.: Automatic robust segmentation scheme for pathological problems in mango crop. Int. J. Mod. Edu. Comput. Sci. 9(1) (2017)

    Google Scholar 

  2. National mango data base. https://mangifera.res.in/indianstatus.php

  3. Sahu, D., Dewangan, C.: Identification and classification of mango fruits using image processing. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2(2), 203–210 (2017)

    Google Scholar 

  4. Kadir, M.F.A., Yusri, N.A.N., Rizon, M., bin Mamat, A.R., Makhtar, M., Jamal, A.A.: Automatic mango detection using texture analysis and randomised hough transform. Appl. Math. Sci. 9(129), 6427–6436 (2015)

    Google Scholar 

  5. Lin, G., Tang, Y., Zou, X., Cheng, J., Xiong, J.: Fruit detection in natural environment using partial shape matching and probabilistic Hough transform. Precision Agricult. 21(1), 160–177 (2020)

    Article  Google Scholar 

  6. Kestur, R., Meduri, A., Narasipura, O.: Mangonet: a deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard. Eng. Appl. Artif. Intell. 77, 59–69 (2019)

    Article  Google Scholar 

  7. Liwag, R.J.H., Cepria, K.J.T., Rapio, A., Cabatuan, K., Calilung, E.: Single shot multi-box detector with multi task convolutional network for carabao mango detection and classification using tensorflow. In: Proceedings of the 5th DLSU Innovation and Technology, pp. 1–8 (2017)

    Google Scholar 

  8. Nanaa, K., Rizon, M., Abd Rahman, M.N., Ibrahim, Y., Abd Aziz, A.Z.: Detecting mango fruits by using randomized hough transform and backpropagation neural network. In: 2014 18th International Conference on Information Visualisation, pp. 388–391. IEEE (2014)

    Google Scholar 

  9. Stein, M., Bargoti, S., Underwood, J.: Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors 16(11), 1915 (2016)

    Article  Google Scholar 

  10. Basri, H., Syarif, I., Sukaridhoto, S.: Faster r-cnn implementation method for multi-fruit detection using tensorflow platform. In: International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), pp. 337–340. IEEE (2018)

    Google Scholar 

  11. Junos, M.H., Mohd Khairuddin, A.S., Thannirmalai, S., Dahari, M.: An optimized yolo-based object detection model for crop harvesting system. IET Image Process. 15(9), 2112–2125 (2021)

    Article  Google Scholar 

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  13. Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning-method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agricult. 162, 219–234 (2019)

    Article  Google Scholar 

  14. ultralytics. yolov5. https://github.com/ultralytics/yolov5

  15. Liang, Q., Zhu, W., Long, J., Wang, Y., Sun, W., Wu, W.: A real-time detection framework for on-tree mango based on SSD network. In: International Conference on Intelligent Robotics and Applications, pp. 423–436. Springer (2018)

    Google Scholar 

  16. Borianne, P., Borne, F., Sarron, J., Faye, E.: Deep mangoes: from fruit detection to cultivar identification in colour images of mango trees. (2019) arXiv preprint arXiv:1909.10939

  17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016)

    Google Scholar 

  18. Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., Li, X.: A real-time detection algorithm for kiwifruit defects based on yolov5. Electronics 10(14), 1711 (2021)

    Article  Google Scholar 

  19. Xiong, J., Liu, Z., Chen, S., Liu, B., Zheng, Z., Zhong, Z., Yang, Z., Peng, H.: Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosyst. Eng. 194, 261–272 (2020)

    Article  Google Scholar 

  20. Xu, Z.-F., Jia, R.-S., Sun, H.-M., Liu, Q.-M., Cui, Z.: Light-yolov3: fast method for detecting green mangoes in complex scenes using picking robots. Appl. Intell. 50(12), 4670–4687 (2020)

    Article  Google Scholar 

  21. Yan, B., Fan, P., Lei, X., Liu, Z., Yang, F.: A real-time apple targets detection method for picking robot based on improved yolov5. Remote Sensing 13(9), 1619 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Vara Prasad Yerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hari Chandana, P., Subudhi, P., Vara Prasad Yerra, R. (2023). MangoYOLO5: A Fast and Compact YOLOv5 Model for Mango Detection. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_57

Download citation

Publish with us

Policies and ethics