Abstract
The decomposition of 3D shapes into simple yet representative components is a very intriguing topic in computer vision as it is very useful for many possible applications. Superquadrics may be used with benefit to obtain an implicit representation of the 3D shapes, as they allow to represent a wide range of possible forms by few parameters. However, in the computation of the shape representation, there is often an intricate trade-off between the variation of the represented geometric forms and the accuracy in such implicit approaches. In this paper, we propose an improved loss function, and we introduce beneficial computational techniques. By comparing results obtained by our new technique to the baseline method, we demonstrate that our results are more reliable and accurate, as well as much faster to obtain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)
Biederman, I.: Human image understanding: Recent research and a theory. Comput. Vis. Graph. Image Process. 32(1), 29–73 (1985)
Binford, I.: Visual perception by computer. In: IEEE Conference of Systems and Control (1971)
Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236 (2016)
Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Chevalier, L., Jaillet, F., Baskurt, A.: Segmentation and superquadric modeling of 3d objects (2003)
Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: Cvxnet: Learnable convex decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 31–44 (2020)
Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 869–877 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision. pp. 1026–1034 (2015)
Huang, J., Gao, J., Ganapathi-Subramanian, V., Su, H., Liu, Y., Tang, C., Guibas, L.J.: Deepprimitive: Image decomposition by layered primitive detection. Comput. Vis. Media 4(4), 385–397 (2018)
Kawana, Y., Mukuta, Y., Harada, T.: Neural star domain as primitive representation. arXiv preprint arXiv:2010.11248 (2020)
Li, C., Zeeshan Zia, M., Tran, Q.H., Yu, X., Hager, G.D., Chandraker, M.: Deep supervision with shape concepts for occlusion-aware 3d object parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5465–5474 (2017)
Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer, E., Kim, V.G., Lipman, Y.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4), 71–1 (2017)
Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 922–928. IEEE (2015)
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model cnns. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5115–5124 (2017)
Paschalidou, D., Gool, L.V., Geiger, A.: Learning unsupervised hierarchical part decomposition of 3d objects from a single RGB image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1060–1070 (2020)
Paschalidou, D., Katharopoulos, A., Geiger, A., Fidler, S.: Neural parts: Learning expressive 3d shape abstractions with invertible neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3204–3215 (2021)
Paschalidou, D., Ulusoy, A.O., Geiger, A.: Superquadrics revisited: Learning 3d shape parsing beyond cuboids. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10344–10353 (2019)
Pentland, A.: Parts: Structured descriptions of shape. In: AAAI. pp. 695–701 (1986)
Pilu, M., Fisher, R.B.: Equal-distance sampling of superellipse models (1995)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)
Roberts, L.G.: Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of Technology (1963)
Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 1711–1719 (2020)
Sinha, A., Bai, J., Ramani, K.: Deep learning 3d shape surfaces using geometry images. In: European Conference on Computer Vision. pp. 223–240. Springer (2016)
Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV). pp. 464–472. IEEE (2017)
Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 131–147 (1990)
Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2635–2643 (2017)
Verma, N., Boyer, E., Verbeek, J.: Feastnet: Feature-steered graph convolutions for 3d shape analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2598–2606 (2018)
Wu, B., Liu, Y., Lang, B., Huang, L.: Dgcnn: Disordered graph convolutional neural network based on the gaussian mixture model. Neurocomputing 321, 346–356 (2018)
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1912–1920 (2015)
Zou, C., Yumer, E., Yang, J., Ceylan, D., Hoiem, D.: 3d-prnn: generating shape primitives with recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 900–909 (2017)
Acknowledgements
The current work was supported by the European Regional Development Fund, EFRE 85037495. Furthermore, the authors acknowledge the support by BTU Graduate Research School (STIBET short-term scholarship for international PhD Students sponsored by the German Academic Exchange Service (DAAD) with funds of the German Federal Foreign Office).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Eltaher, M., Breuß, M. (2023). Unsupervised Description of 3D Shapes by Superquadrics Using Deep Learning. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_9
Download citation
DOI: https://doi.org/10.1007/978-981-19-7867-8_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-7866-1
Online ISBN: 978-981-19-7867-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)