Abstract
Many modern block cipher schemes are constructed based on substitution-permutation networks (SPNs). Their provable security is often evaluated by idealizing S-boxes as underlying primitives (public or secret). This limits the security bound to the domain-size of the S-boxes, and it will not make much sense when this size is small. In this paper, we propose an SPN-based scheme, namely FLC, to achieve provable security in the Luby-Rackoff model in which the round functions are underlying primitives and secret. Concretely, the 3-round FLC scheme is pseudorandom, while the 5-round FLC scheme is super pseudorandom. Both of these results are capped at birthday-bound security up to \(O(2^{\frac{w}{2}})\), when w is the size of the round functions. These are the best results for SPN-based schemes in the Luby-Rackoff model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19
Daemen, J., Rijmen, V.: The Design of Rijndael, vol. 2. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-04722-4
Datta, N., Nandi, M.: Characterization of EME with linear mixing. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 221–239. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_17
Dodis, Y., Katz, J., Steinberger, J., Thiruvengadam, A., Zhang, Z.: Provable security of substitution-permutation networks. Cryptology ePrint Archive (2017)
Dolmatov, V.: Gost r 34.12-2015: Block cipher“ kuznyechik". Tech. rep. (2016)
Gao, Y., Guo, C., Wang, M., Wang, W., Wen, J.: Beyond-birthday-bound security for 4-round linear substitution-permutation networks. IACR Trans. Symmet. Cryptol. 2020, 305–326 (2020)
Gilbert, H., Minier, M.: New results on the pseudorandomness of some blockcipher constructions. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 248–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_21
Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_28
Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_33
Iwata, T., Kurosawa, K.: On the pseudorandomness of the AES finalists - RC6 and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 231–243. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_16
Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
Luo, Y., Lai, X., Gong, Z.: Pseudorandomness analysis of the (extended) lai-massey scheme. Inf. Process. Lett. 111(2), 90–96 (2010)
Luo, Y., Lai, X., Hu, J.: The pseudorandomness of many-round LAI-Massey scheme. J. Inf. Sci. Eng. 31(3), 1085–1096 (2015)
Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions, and natural proofs. J. ACM (JACM) 62(6), 1–29 (2015)
Moriai, S., Vaudenay, S.: On the Pseudorandomness of top-level schemes of block ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_22
Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49530-9
Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)
Oliynykov, R., et al.: A new encryption standard of ukraine: The kalyna block cipher. Cryptology ePrint Archive (2015)
Patarin, J.: Pseudorandom permutations based on the D.E.S. scheme. In: Cohen, G., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54303-1_131
Patarin, J.: The coefficients H technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21
Piret, G.F., et al.: Block ciphers: security proofs, cryptanalysis, design, and fault attacks. Ph.D. thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium (2005)
Vaudenay, S.: On the Lai-Massey scheme. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 8–19. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Nguyen, C., Nguyen, A., Nguyen, L., Trieu, P., Tran, L. (2022). Analysis of a New Practical SPN-Based Scheme in the Luby-Rackoff Model. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. Communications in Computer and Information Science, vol 1688. Springer, Singapore. https://doi.org/10.1007/978-981-19-8069-5_14
Download citation
DOI: https://doi.org/10.1007/978-981-19-8069-5_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8068-8
Online ISBN: 978-981-19-8069-5
eBook Packages: Computer ScienceComputer Science (R0)