Skip to main content

Analysis of a New Practical SPN-Based Scheme in the Luby-Rackoff Model

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1688))

Included in the following conference series:

  • 1997 Accesses

Abstract

Many modern block cipher schemes are constructed based on substitution-permutation networks (SPNs). Their provable security is often evaluated by idealizing S-boxes as underlying primitives (public or secret). This limits the security bound to the domain-size of the S-boxes, and it will not make much sense when this size is small. In this paper, we propose an SPN-based scheme, namely FLC, to achieve provable security in the Luby-Rackoff model in which the round functions are underlying primitives and secret. Concretely, the 3-round FLC scheme is pseudorandom, while the 5-round FLC scheme is super pseudorandom. Both of these results are capped at birthday-bound security up to \(O(2^{\frac{w}{2}})\), when w is the size of the round functions. These are the best results for SPN-based schemes in the Luby-Rackoff model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17

    Chapter  Google Scholar 

  2. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19

    Chapter  Google Scholar 

  3. Daemen, J., Rijmen, V.: The Design of Rijndael, vol. 2. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-04722-4

  4. Datta, N., Nandi, M.: Characterization of EME with linear mixing. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 221–239. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_17

    Chapter  Google Scholar 

  5. Dodis, Y., Katz, J., Steinberger, J., Thiruvengadam, A., Zhang, Z.: Provable security of substitution-permutation networks. Cryptology ePrint Archive (2017)

    Google Scholar 

  6. Dolmatov, V.: Gost r 34.12-2015: Block cipher“ kuznyechik". Tech. rep. (2016)

    Google Scholar 

  7. Gao, Y., Guo, C., Wang, M., Wang, W., Wen, J.: Beyond-birthday-bound security for 4-round linear substitution-permutation networks. IACR Trans. Symmet. Cryptol. 2020, 305–326 (2020)

    Google Scholar 

  8. Gilbert, H., Minier, M.: New results on the pseudorandomness of some blockcipher constructions. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 248–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_21

    Chapter  Google Scholar 

  9. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_28

    Chapter  Google Scholar 

  10. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_33

    Chapter  Google Scholar 

  11. Iwata, T., Kurosawa, K.: On the pseudorandomness of the AES finalists - RC6 and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 231–243. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_16

    Chapter  Google Scholar 

  12. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, Y., Lai, X., Gong, Z.: Pseudorandomness analysis of the (extended) lai-massey scheme. Inf. Process. Lett. 111(2), 90–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, Y., Lai, X., Hu, J.: The pseudorandomness of many-round LAI-Massey scheme. J. Inf. Sci. Eng. 31(3), 1085–1096 (2015)

    MathSciNet  Google Scholar 

  15. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions, and natural proofs. J. ACM (JACM) 62(6), 1–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moriai, S., Vaudenay, S.: On the Pseudorandomness of top-level schemes of block ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_22

    Chapter  Google Scholar 

  17. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49530-9

    Book  MATH  Google Scholar 

  18. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oliynykov, R., et al.: A new encryption standard of ukraine: The kalyna block cipher. Cryptology ePrint Archive (2015)

    Google Scholar 

  20. Patarin, J.: Pseudorandom permutations based on the D.E.S. scheme. In: Cohen, G., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54303-1_131

    Chapter  Google Scholar 

  21. Patarin, J.: The coefficients H technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21

    Chapter  Google Scholar 

  22. Piret, G.F., et al.: Block ciphers: security proofs, cryptanalysis, design, and fault attacks. Ph.D. thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium (2005)

    Google Scholar 

  23. Vaudenay, S.: On the Lai-Massey scheme. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 8–19. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, C., Nguyen, A., Nguyen, L., Trieu, P., Tran, L. (2022). Analysis of a New Practical SPN-Based Scheme in the Luby-Rackoff Model. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. Communications in Computer and Information Science, vol 1688. Springer, Singapore. https://doi.org/10.1007/978-981-19-8069-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8069-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8068-8

  • Online ISBN: 978-981-19-8069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics