Abstract
In this paper, we present a deep neural network-based framework for solving nonlinear partial differential equations (PDEs) and applying in denoising image. A loss function that relies on form PDEs, initial and boundary condition (I/BC) residual was proposed. The proposed loss function is discretization-free and highly parallelizable. The network parameters are determined by using stochastic gradient descent algorithm. We demonstrated the performance of proposed method in solving nonlinear partial diferential equation and applying image denoising. The experimental results from this method were compared to the efficient PDE’s numerical method. We showed that the method attains significant improvements in term image denoising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. 19(6), 1465–1479 (2010)
Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)
Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filtering under structural constraints. IEEE Trans. Signal Process. 43(3), 591–604 (1995)
Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)
Fan, L., Li, X., Guo, Q., Zhang, C.: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection. Science China Inf. Sci. 61(4), 1–3 (2018). https://doi.org/10.1007/s11432-017-9207-9
Grewenig, S., Zimmer, S., Weickert, J.: Rotationally invariant similarity measures for nonlocal image denoising. J. Vis. Commun. Image Represent. 22(2), 117–130 (2011)
Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)
Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Process. 21(5), 2559–2571 (2012)
Fan, L., Li, X., Fan, H., Feng, Y., Zhang, C.: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors. IEEE Trans. Circuits Syst. Video Technol. 29(11), 3222–3235 (2018)
Zhang, L., Zuo, W.: Image restoration: From sparse and low-rank priors to deep priors [lecture notes]. IEEE Signal Process. Mag. 34(5), 172–179 (2017)
Lou, Y., Zeng, T., Osher, S., Xin, J.: A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Fan, L., Zhang, F., Fan, H., Zhang, C.: Brief review of image denoising techniques. Visual Computing for Industry, Biomedicine, and Art 2(1), 1–12 (2019). https://doi.org/10.1186/s42492-019-0016-7
Jain, P., Tyagi, V.: Spatial and frequency domain filters for restoration of noisy images. IETE J. Educ. 54(2), 108–116 (2013)
Ashouri, F., Eslahchi, M.R.: A new PDE learning model for image denoising. Neural Comput. Appl. 34(11), 8551–8574 (2022)
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096–1103
J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012
Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Zhang, K., Zuo, W., Zhang, L.: FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)
Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)
A. P. Witkin, “Scale-space filtering,” in Readings in Computer Vision, Elsevier, 1987, pp. 329–332
Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21(3), 958–967 (2011)
Yahya, A.A., Tan, J., Hu, M.: A blending method based on partial differential equations for image denoising. Multimedia Tools and Applications 73(3), 1843–1862 (2013). https://doi.org/10.1007/s11042-013-1586-6
Shih, Y., Rei, C., Wang, H.: A novel PDE based image restoration: convection–diffusion equation for image denoising. J. Comput. Appl. Math. 231(2), 771–779 (2009)
Saloma, C.: Computational complexity and the observation of physical signals. J. Appl. Phys. 74(9), 5314–5319 (1993)
Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)
Monteil, J., Beghdadi, A.: A new interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 940–946 (1999)
Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3), 201–226 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ho, Q.D., Huynh, H.T. (2022). An Image Denoising Model Based on Nonlinear Partial Diferential Equation Using Deep Learning. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. Communications in Computer and Information Science, vol 1688. Springer, Singapore. https://doi.org/10.1007/978-981-19-8069-5_27
Download citation
DOI: https://doi.org/10.1007/978-981-19-8069-5_27
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8068-8
Online ISBN: 978-981-19-8069-5
eBook Packages: Computer ScienceComputer Science (R0)