Skip to main content

An Image Denoising Model Based on Nonlinear Partial Diferential Equation Using Deep Learning

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2022)

Abstract

In this paper, we present a deep neural network-based framework for solving nonlinear partial differential equations (PDEs) and applying in denoising image. A loss function that relies on form PDEs, initial and boundary condition (I/BC) residual was proposed. The proposed loss function is discretization-free and highly parallelizable. The network parameters are determined by using stochastic gradient descent algorithm. We demonstrated the performance of proposed method in solving nonlinear partial diferential equation and applying image denoising. The experimental results from this method were compared to the efficient PDE’s numerical method. We showed that the method attains significant improvements in term image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. 19(6), 1465–1479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  3. Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filtering under structural constraints. IEEE Trans. Signal Process. 43(3), 591–604 (1995)

    Article  Google Scholar 

  4. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan, L., Li, X., Guo, Q., Zhang, C.: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection. Science China Inf. Sci. 61(4), 1–3 (2018). https://doi.org/10.1007/s11432-017-9207-9

    Article  Google Scholar 

  6. Grewenig, S., Zimmer, S., Weickert, J.: Rotationally invariant similarity measures for nonlocal image denoising. J. Vis. Commun. Image Represent. 22(2), 117–130 (2011)

    Article  Google Scholar 

  7. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  MATH  Google Scholar 

  8. Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Process. 21(5), 2559–2571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, L., Li, X., Fan, H., Feng, Y., Zhang, C.: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors. IEEE Trans. Circuits Syst. Video Technol. 29(11), 3222–3235 (2018)

    Article  Google Scholar 

  10. Zhang, L., Zuo, W.: Image restoration: From sparse and low-rank priors to deep priors [lecture notes]. IEEE Signal Process. Mag. 34(5), 172–179 (2017)

    Article  Google Scholar 

  11. Lou, Y., Zeng, T., Osher, S., Xin, J.: A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  13. Fan, L., Zhang, F., Fan, H., Zhang, C.: Brief review of image denoising techniques. Visual Computing for Industry, Biomedicine, and Art 2(1), 1–12 (2019). https://doi.org/10.1186/s42492-019-0016-7

    Article  Google Scholar 

  14. Jain, P., Tyagi, V.: Spatial and frequency domain filters for restoration of noisy images. IETE J. Educ. 54(2), 108–116 (2013)

    Article  Google Scholar 

  15. Ashouri, F., Eslahchi, M.R.: A new PDE learning model for image denoising. Neural Comput. Appl. 34(11), 8551–8574 (2022)

    Article  Google Scholar 

  16. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096–1103

    Google Scholar 

  17. J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012

    Google Scholar 

  18. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  19. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, K., Zuo, W., Zhang, L.: FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  21. Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. P. Witkin, “Scale-space filtering,” in Readings in Computer Vision, Elsevier, 1987, pp. 329–332

    Google Scholar 

  23. Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21(3), 958–967 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Yahya, A.A., Tan, J., Hu, M.: A blending method based on partial differential equations for image denoising. Multimedia Tools and Applications 73(3), 1843–1862 (2013). https://doi.org/10.1007/s11042-013-1586-6

    Article  Google Scholar 

  25. Shih, Y., Rei, C., Wang, H.: A novel PDE based image restoration: convection–diffusion equation for image denoising. J. Comput. Appl. Math. 231(2), 771–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saloma, C.: Computational complexity and the observation of physical signals. J. Appl. Phys. 74(9), 5314–5319 (1993)

    Article  Google Scholar 

  27. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)

    Article  Google Scholar 

  28. Monteil, J., Beghdadi, A.: A new interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 940–946 (1999)

    Article  Google Scholar 

  29. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3), 201–226 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu Trung Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, Q.D., Huynh, H.T. (2022). An Image Denoising Model Based on Nonlinear Partial Diferential Equation Using Deep Learning. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. Communications in Computer and Information Science, vol 1688. Springer, Singapore. https://doi.org/10.1007/978-981-19-8069-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8069-5_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8068-8

  • Online ISBN: 978-981-19-8069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics