Abstract
The diabetes mellitus has been known to be a serious illness and revered for its ability to cause high mortality rate. This disease is famous among both youth and adult for its existence in the human body, and very difficult to diagnose, thus, produces an under-diagnosis issue when clinicians try to pinpoint the precise symptoms for disease prediction. The majority of the currently used diagnostic and monitoring methods are designed on type 1 fuzzy logic or ontology, which, as a result of the inconsistent and ambiguous nature of the collected data, is unsatisfactory. Therefore, this paper proposes an enhanced feature selection-based enabled type-2 fuzzy logic (T2FL) model for the prediction of diabetes patients. The proposed model used Particle Swarm Optimization to select the most relevant features from the dataset so as to remove irrelevant features from the data, and T2FL technique was used for the classification of the disease. The model extract precise information and correctly conclude the result. The proposed technique utilizes T2FL to determine the membership values of the clinical information, and the decision-making mechanism properly processes the evidence derived from the crisp values. A comprehensive computer simulation using a diabetes dataset shows that the suggested strategy works noticeably better than the ones already in place based on type-1 fuzzy logic and ontology in terms of determination effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hamamoto, A.H., Carvalho, L.F., Sampaio, L.D.H., Abrão, T., Proença, M.L., Jr.: Network anomaly detection system using genetic algorithm and fuzzy logic. Expert Syst. Appl. 92, 390–402 (2018)
Almseidin, M., Al-Sawwa, J., Alkasassbeh, M.: Anomaly-based intrusion detection system using fuzzy logic. In: 2021 International Conference on Information Technology (ICIT), pp. 290–295. IEEE, July 2021
Soltani, A., Battikh, T., Jabri, I., Lakhoua, N.: A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomed. Signal Process. Control 40, 366–377 (2018)
Amza, C.G., Cicic, D.T.: Industrial image processing using fuzzy-logic. Procedia Eng. 100, 492–498 (2015)
Arji, G., et al.: Fuzzy logic approach for infectious disease diagnosis: a methodical evaluation, literature and classification. Biocybern. Biomed. Eng. 39(4), 937–955 (2019)
Zaitseva, E., Piestova, I., Rabcan, J., Rusnak, P.: Multiple-valued and fuzzy logics application to remote sensing data analysis. In: 2018 26th Telecommunications Forum (TELFOR), pp. 1–4. IEEE, November 2018
Awotunde, J.B., Jimoh, R.G., AbdulRaheem, M., Oladipo, I.D., Folorunso, S.O., Ajamu, G.J.: IoT-based wearable body sensor network for COVID-19 pandemic. In: Hassanien, A.-E., Elghamrawy, S.M., Zelinka, I. (eds.) Advances in data science and intelligent data communication technologies for COVID-19. SSDC, vol. 378, pp. 253–275. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-77302-1_14
Awotunde, J.B., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F.: Disease diagnosis system for IoT-based wearable body sensors with machine learning algorithm. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., de Albuquerque, V.H.C. (eds.) Hybrid Artificial Intelligence and IoT in Healthcare. Intelligent Systems Reference Library, vol. 209, pp. 201–222. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2972-3_10
Souza, P.V.C.: Regularized fuzzy neural networks for pattern classification problems. Int. J. Appl. Eng. Res. 13(5), 2985–2991 (2018)
Elkano, M., Sanz, J.A., Barrenechea, E., Bustince, H., Galar, M.: CFM-BD: a distributed rule induction algorithm for building compact fuzzy models in big data classification problems. IEEE Trans. Fuzzy Syst. 28(1), 163–177 (2019)
Maheshwari, V., et al.: Nanotechnology-based sensitive biosensors for COVID-19 prediction using fuzzy logic control. J. Nanomater. 2021, 1–8 (2021)
Dubey, S., Verma, D.: Fuzzy logic based intelligent data sensitive security model for big data in healthcare. Int. J. Electron. Telecommun. 68, 245–250 (2022)
Tian, Z.P., Nie, R.X., Wang, J.Q.: Social network analysis-based consensus-supporting framework for large-scale group decision-making with incomplete interval type-2 fuzzy information. Inf. Sci. 502, 446–471 (2019)
Rocha, E.M., et al.: A fuzzy type-2 fault detection methodology to minimize false alarm rate in induction motor monitoring applications. Appl. Soft Comput. 93, 106373 (2020)
Mohammadzadeh, A., Kumbasar, T.: A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Appl. Soft Comput. 91, 106241 (2020)
Takahashi, A., Takahashi, S.: A new interval type-2 fuzzy logic system under dynamic environment: application to financial investment. Eng. Appl. Artif. Intell. 100, 104154 (2021)
Tao, Y., Zhang, J., Yang, L.: An unequal clustering algorithm for wireless sensor networks based on interval type-2 TSK fuzzy logic theory. IEEE Access 8, 197173–197183 (2020)
Sisodia, D., Sisodia, D.S.: Prediction of diabetes using classification algorithms. Procedia Comput. Sci. 132, 1578–1585 (2018)
Vitabile, S., et al.: Medical data processing and analysis for remote health and activities monitoring. In: Kołodziej, J., González-Vélez, H. (eds.) High-performance modelling and simulation for big data applications. LNCS, vol. 11400, pp. 186–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16272-6_7
Khanal, N., et al.: FootAssure: a multimodal, in-home wound detection device for diabetic peripheral neuropathy. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4019–4022. IEEE, November 2021
Oladipo, I.D., Babatunde, A.O., Awotunde, J.B., Abdulraheem, M.: An improved hybridization in the diagnosis of diabetes mellitus using selected computational intelligence. In: Misra, S., Muhammad-Bello, B. (eds.) ICTA 2020. CCIS, vol. 1350, pp. 272–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69143-1_22
Bhatti, J.S., et al.: Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 184, 114–134 (2022)
Luxton, D.D.: An introduction to artificial intelligence in behavioral and mental health care. In: Artificial Intelligence in Behavioral and Mental Health Care, pp. 1–26. Academic Press (2016)
Mohd Sharif, N.A., et al.: A fuzzy rule-based expert system for asthma severity identification in emergency department. J. Inf. Commun. Technol. (JICT) 18(4), 415–438 (2019)
Ayo, F.E., Folorunso, S.O., Abayomi-Alli, A.A., Adekunle, A.O., Awotunde, J.B.: Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Inf. Secur. J. Glob. Perspect. 29(6), 267–283 (2020)
Mohan, N., Jain, V.: Performance analysis of support vector machine in diabetes prediction. In: 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1–3. IEEE, November 2020
Pradhan, N., Rani, G., Dhaka, V.S., Poonia, R.C.: Diabetes prediction using artificial neural network. In: Deep Learning Techniques for Biomedical and Health Informatics, pp. 327–339. Academic Press (2020)
Garcia-Carretero, R., Vigil-Medina, L., Mora-Jimenez, I., Soguero-Ruiz, C., Barquero-Perez, O., Ramos-Lopez, J.: Use of a K-nearest neighbors model to predict the development of type 2 diabetes within 2 years in an obese, hypertensive population. Med. Biol. Eng. Comput. 58(5), 991–1002 (2020). https://doi.org/10.1007/s11517-020-02132-w
Abdollahi, J., Nouri-Moghaddam, B.: Hybrid stacked ensemble combined with genetic algorithms for diabetes prediction. Iran J. Comput. Sci. 5, 205–220 (2022). https://doi.org/10.1007/s42044-022-00100-1
Anwar, N.H. K., Saian, R., Bakar, S.A.: An enhanced ant colony optimization with Gini index for predicting type 2 diabetes. In: AIP Conference Proceedings, vol. 2365, no. 1, p. 020004. AIP Publishing LLC, July 2021
Hasan, M.K., Alam, M.A., Das, D., Hossain, E., Hasan, M.: Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8, 76516–76531 (2020)
Sarabakha, A., Fu, C., Kayacan, E.: Intuit before tuning: Type-1 and type-2 fuzzy logic controllers. Appl. Soft Comput. 81, 105495 (2019)
Alcalá-Fdez, J., Alcalá, R., González, S., Nojima, Y., García, S.: Evolutionary fuzzy rule-based methods for monotonic classification. IEEE Trans. Fuzzy Syst. 25(6), 1376–1390 (2017)
Soltani, Z., Jafarian, A.: A new artificial neural networks approach for diagnosing diabetes disease type II. Int. J. Adv. Comput. Sci. Appl. 7(6), 89–94 (2016)
Awotunde, J.B., Jimoh, R.G., Oladipo, I.D., Abdulraheem, M.: Prediction of malaria fever using long-short-term memory and big data. In: Misra, S., Muhammad-Bello, B. (eds.) ICTA 2020. CCIS, vol. 1350, pp. 41–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69143-1_4
Odedra, D., Samanta, S., Vidyarthi, A.S.: Computational intelligence in early diabetes diagnosis: a review. Rev. Diabet. Stud. RDS 7(4), 252 (2010)
Suvarnamukhi, B., Seshashayee, M.: Big data processing system for diabetes prediction using machine learning technique. IJITEE (2019). ISSN 2278-3075
Lalmi, F., Adala, L.: Big Data for Healthcare: Opportunities and Challenges. In: Hamdan, A., Hassanien, A.E., Razzaque, A., Alareeni, B. (eds.) The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success. SCI, vol. 935, pp. 217–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62796-6_12
Thakkar, H., Shah, V., Yagnik, H., Shah, M.: Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clin. eHealth 4, 12–23 (2021)
Al-Behadili, H.N.K., Ku-Mahamud, K.R.: Fuzzy unordered rule using greedy hill climbing feature selection method: an application to diabetes classification. J. Inf. Commun. Technol. 20(3), 391–422 (2021)
Jayanthi, N., Babu, B.V., Rao, N.S.: Survey on clinical prediction models for diabetes prediction. J. Big Data 4(1), 1–15 (2017). https://doi.org/10.1186/s40537-017-0082-7
El-Sappagh, S., Elmogy, M.: A decision support system for diabetes mellitus management. Diabet. Case Rep 1(102), 2 (2016)
Last, M., Kandel, A.: Automated detection of outliers in real-world data. In: Proceedings of the Second International Conference on Intelligent Technologies, pp. 292–301. InTech, November 2001
Narita, K., Kitagawa, H.: Outlier detection for transaction databases using association rules. In 2008 The Ninth International Conference on Web-Age Information Management, pp. 373–380. IEEE, July 2008
Shahi, A., Atan, R.B., Sulaiman, M.N.: Detecting effectiveness of outliers and noisy data on fuzzy system using FCM. Eur. J. Sci. Res. 36(4), 627–638 (2009)
Vieira, S.M., Sousa, J.M., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy Sets Syst. 189(1), 1–18 (2012)
Nosrati Nahook, H., Eftekhari, M.: A new method for feature selection based on fuzzy similarity measures using multi objective genetic algorithm. J. Fuzzy Set Valued Anal. 2014, 1–12 (2014)
Mallikarjun, T.N.V., Gundabathina, J.: Fuzzy classification rules generation with ant colony optimization for diabetes diagnosis. Int. J. Emerg. Trends Technol. Comput. Sci 5, 39–44 (2016)
Mei, J., et al.: Deep diabetologist: learning to prescribe hypoglycemic medications with recurrent neural networks. Stud. Health Technol. Inform. 245, 1277 (2017)
Saxena, K., Khan, Z., Singh, S.: Diagnosis of diabetes mellitus using k nearest neighbor algorithm. Int. J. Comput. Sci. Trends Technol. (IJCST) 2(4), 36–43 (2014)
El-Alfy, E.S.M., Al-Obeidat, F.N.: A multicriterion fuzzy classification method with greedy attribute selection for anomaly-based intrusion detection. Procedia Comput. Sci. 34, 55–62 (2014)
Ganji, M.F., Abadeh, M.S.: A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Syst. Appl. 38(12), 14650–14659 (2011)
Awotunde, J.B., Misra, S., Ayeni, F., Maskeliunas, R., Damasevicius, R.: Artificial intelligence based system for bank loan fraud prediction. In: Abraham, A., et al. (eds.) HIS 2021. LNNS, vol. 420, pp. 463–472. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96305-7_43
Adeniyi, E.A., Gbadamosi, B., Awotunde, J.B., Misra, S., Sharma, M.M., Oluranti, J.: Crude oil price prediction using particle swarm optimization and classification algorithms. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds.) ISDA 2021. LNNS, vol. 418, pp. 1384–1394. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96308-8_128
Awotunde, J.B., Misra, S.: Feature extraction and artificial intelligence-based intrusion detection model for a secure internet of things networks. In: Misra, S., Arumugam, C. (eds.) Illumination of Artificial Intelligence in Cybersecurity and Forensics. LNDECT, vol. 109, pp. 21–44. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93453-8_2
Ali, L., Bukhari, S.A.C.: An approach based on mutually informed neural networks to optimize the generalization capabilities of decision support systems developed for heart failure prediction. IRBM 42(5), 345–352 (2021)
Beloufa, F., Chikh, M.A.: Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm. Comput. Methods Programs Biomed. 112(1), 92–103 (2013)
Hayashi, Y., Yukita, S.: Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset. Inform. Med. Unlock. 2, 92–104 (2016)
Polat, K., Güneş, S.: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst. Appl. 34(3), 2039–2048 (2008)
Kahramanli, H., Allahverdi, N.: Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 35(1–2), 82–89 (2008)
Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4), 4600–4607 (2011)
Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44(1), 103–115 (2013). https://doi.org/10.1007/s10462-013-9405-z
Feng, T.C., Li, T.H.S., Kuo, P.H.: Variable coded hierarchical fuzzy classification model using DNA coding and evolutionary programming. Appl. Math. Model. 39(23–24), 7401–7419 (2015)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Awotunde, J.B., Misra, S., Pham, Q.T. (2022). An Enhanced Diabetes Mellitus Prediction Using Feature Selection-Based Type-2 Fuzzy Model. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. Communications in Computer and Information Science, vol 1688. Springer, Singapore. https://doi.org/10.1007/978-981-19-8069-5_43
Download citation
DOI: https://doi.org/10.1007/978-981-19-8069-5_43
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8068-8
Online ISBN: 978-981-19-8069-5
eBook Packages: Computer ScienceComputer Science (R0)