Skip to main content

The Polynomial Randomized Algorithm to Compute Bounded Degree Graph for TSP Based on Frequency Quadrilaterals

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1693))

Included in the following conference series:

  • 229 Accesses

Abstract

It is the first time that bounded degree graph is proven to be computed for a big class of TSP in polynomial time based on frequency quadrilaterals. As TSP conforms to the properties of frequency quadrilaterals, a polynomial algorithm is given to reduce complete graph of TSP to bounded degree graph in which the optimal Hamiltonian cycle is preserved with a probability above 0.5. For TSP on such bounded degree graphs, there are more competitive exact and approximation algorithms.

Supported by State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  2. Gutin, G., Punnen, A.-P.: The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, Springer, London (2007)

    Book  MATH  Google Scholar 

  3. de Berg, M., Bodlaender, H.-L., Kisfaludi-Bak, S., Kolay, S.: An ETH-tight exact algorithm for Euclidean TSP. In: The 59th Symposium on Foundations of Computer Science, FOCS 2018, pp. 450–461. IEEE, New York (2018)

    Google Scholar 

  4. Karlin, A.-R., Klein, N., Gharan, S.-O.: A (slightly) improved approximation algorithm for metric TSP. In: The 53rd Symposium on Theory of Computing, STOC 2021, pp. 32–45. ACM, New York (2021)

    Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms 8(2), 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jonker, R., Volgenant, T.: Nonoptimal edges for the symmetric traveling salesman problem. Oper. Res. 32(4), 837–846 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hougardy, S., Schroeder, R.T.: Edge elimination in TSP instances. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 275–286. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_23

    Chapter  MATH  Google Scholar 

  8. Wang, Y., Remmel, J.-B.: A binomial distribution model for travelling salesman problem based on frequency quadrilaterals. J. Graph Algorithms Appl. 20(2), 411–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karp, R.: On the computational complexity of combinatorial problems. Networks (USA) 5(1), 45–68 (1975)

    Article  MATH  Google Scholar 

  10. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Sco. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: The 51st Symposium on Foundations of Computer Science, FOCS 2010, pp. 173–182. IEEE, New York (2010)

    Google Scholar 

  13. Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F.: A branch-and-cut algorithm for the generalized traveling salesman problem with time windows. Eur. J. Oper. Res. 286(3), 849–866 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Applegate, D.-L., et al.: Certification of an optimal TSP tour through 85900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cook, W.: The traveling salesman problem: postcards from the edge of impossibility (Plenary talk). In: The 30th European Conference on Operational Research, Dublin, Ireland (2019)

    Google Scholar 

  16. Kisfaludi-Bak, S., Nederlof, J., Wegrzycki, K.: A gap-ETH-tight approximation scheme for Euclidean TSP arXiv:2011.03778v2 (2021)

  17. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1), 61–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liśkiewicz, M., Schuster, M.R.: A new upper bound for the traveling salesman problem in cubic graphs. J. Discret. Algorithms 27, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiao, M.-Y., Nagamochi, H.: An exact algorithm for TSP in degree-3 graphs via circuit procedure and amortization on connectivity structure. Algorithmica 74(2), 713–741 (2016). https://doi.org/10.1007/s00453-015-9970-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Dorn, F., Penninkx, E., Bodlaender, H.-L., Fomin, F.-V.: Efficient exact algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010). https://doi.org/10.1007/s00453-009-9296-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Program. 144(1–2), 227–245 (2014). https://doi.org/10.1007/s10107-012-0620-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Correa, J.-R., Larré, O., Soto, J.-A.: TSP tours in cubic graphs: beyond 4/3. SIAM J. Discret. Math. 29(2), 915–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klein, P.: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Borradaile, G., Demaine, E.-D., Tazari, S.: Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica 68(2), 287–311 (2014). https://doi.org/10.1007/s00453-012-9662-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Svensson, O., Tarnawski, J., Végh, L.-A.: A constant-factor approximation algorithm for the asymmetric traveling salesman problem arXiv:1708.04215pdf (2019)

  26. Traub, V., Vygen, J.: An improved approximation algorithm for ATSP. In: The 52nd Symposium on Theory of Computing, STOC 2020, pp. 1–13. ACM, New York (2020)

    Google Scholar 

  27. Erickson, J., Sidiropoulos, A.: A near-optimal approximation algorithm for asymmetric TSP on embedded graphs arXiv:1304.1810v2 (2013)

  28. Kawarabayashi, K., Sidiropoulos, A.: Polylogarithmic approximation for Euler genus on bounded degree graphs. In: The 51st Symposium on the Theory of Computing, STOC 2019, pp. 164–175. ACM, New York (2019)

    Google Scholar 

  29. Taillard, E.-D., Helsgaun, K.: POPMUSIC for the traveling salesman problem. Eur. J. Oper. Res. 272(2), 420–429 (2019)

    Article  MATH  Google Scholar 

  30. Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based branch and bound algorithms for the ATSP. Eur. J. Oper. Res. 189(3), 775–788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Y., Remmel, J.: A method to compute the sparse graphs for traveling salesman problem based on frequency quadrilaterals. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7_22

    Chapter  Google Scholar 

  32. Wang, Y.: Bounded degree graphs computed for traveling salesman problem based on frequency quadrilaterals. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 529–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-0_43

    Chapter  Google Scholar 

  33. Wang, Y.: Sufficient and necessary conditions for an edge in the optimal Hamiltonian cycle based on frequency qudrilaterals. J. Optim. Theory Appl. 181(2), 671–683 (2019). https://doi.org/10.1007/s10957-018-01465-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Han, Z.: The frequency of the optimal Hamiltonian cycle computed with frequency quadrilaterals for traveling salesman problem. In: Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp. 513–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57602-8_46

    Chapter  Google Scholar 

  35. Wang, Y.: Special frequency quadrilaterals and an application. In: Sun, X., He, K., Chen, X. (eds.) NCTCS 2019. CCIS, vol. 1069, pp. 16–26. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0105-0_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. (2022). The Polynomial Randomized Algorithm to Compute Bounded Degree Graph for TSP Based on Frequency Quadrilaterals. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics