Abstract
Similarity search in moving object trajectories is a fundamental task in spatio-temporal data mining and analysis. Different from conventional trajectory matching tasks, shape-based trajectory search (STS) aims to find all trajectories that are similar in shape to the query trajectory, which may be judged to be dissimilar based on their coordinates. STS can be useful in various real world applications, such as geography discovery, animal migration, weather forecasting, autonomous driving, etc. However, most of existing trajectory distance functions are designed to compare location-based trajectories and few can be directly applied to STS tasks. In order to match shape-based trajectories, we first convert them to a rotation-and-translation-invariant form. Next, we propose a distance function called shape-based distance (SBD) to calculate the accurate distance between two trajectories, which follows an align-based paradigm. Then, to accelerate STS, we propose a trajectory representation framework based on symbolic representation to support efficient rough match. Finally, extensive experiments on two real-world datasets demonstrate the effectiveness and efficiency of our framework.
Z. Fu—Contributing authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, S., Bao, Z., Culpepper, J.S., Sellis, T., Qin, X.: Fast large-scale trajectory clustering. Proc. VLDB Endow. 13(1), 29–42 (2019). https://doi.org/10.14778/3357377.3357380
Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings - International Conference on Data Engineering, vol. 4(c), pp. 900–911 (2011). https://doi.org/10.1109/ICDE.2011.5767890
Sanchez, I., Aye, Z.M.M., Rubinstein, B.I.P., Ramamohanarao, K.: Fast trajectory clustering using Hashing methods. In: Proceedings of the International Joint Conference on Neural Networks, pp. 3689–3696 (2016). https://doi.org/10.1109/IJCNN.2016.7727674
Astefanoaei, M., Cesaretti, P., Katsikouli, P., Goswami, M., Sarkar, R.: Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, pp. 279–288 (2018). https://doi.org/10.1145/3274895.3274943
Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: Proceedings - IEEE 34th International Conference on Data Engineering, ICDE 2018, pp. 617–628 (2018). https://doi.org/10.1109/ICDE.2018.00062
Xie, M.: EDS: a segment-based distance measure for sub-trajectory similarity search. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1609–1610 (2014). https://doi.org/10.1145/2588555.2612665
Yao, D., Cong, G., Zhang, C., Bi, J.: Computing trajectory similarity in linear time: a generic seed-guided neural metric learning approach. In: Proceedings - International Conference on Data Engineering, pp. 1358–1369 (2019). https://doi.org/10.1109/ICDE.2019.00123
Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings - International Conference on Data Engineering, pp. 816–825 (2007). https://doi.org/10.1109/ICDE.2007.367927
Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: Proceedings - International Conference on Data Engineering, pp. 999–1010 (2015). https://doi.org/10.1109/ICDE.2015.7113351
Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity query for trajectory of mobile objects. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 63–77. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36389-0_5
Yu, C., Luo, L., Chan, L.L.H., Rakthanmanon, T., Nutanong, S.: A fast LSH-based similarity search method for multivariate time series. Inf. Sci. 476, 337–356 (2019). https://doi.org/10.1016/j.ins.2018.10.026
Driemel, A., Silvestri, F.: Locality-sensitive hashing of curves. In: Leibniz International Proceedings in Informatics. LIPIcs, vol. 77, no. 614331, pp. 371–3716 (2017). https://arxiv.org/abs/1703.04040. https://doi.org/10.4230/LIPIcs.SoCG.2017.37
Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. In: Proceedings - International Conference on Data Engineering, pp. 1144–1155 (2012). https://doi.org/10.1109/ICDE.2012.42
Vlachos, M., Gunopulos, D., Das, G.: Rotation invariant distance measures for trajectories. In: KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 707–712 (2004). https://doi.org/10.1145/1014052.1014144
Chen, L., Özsu, M.T., Oria, V.: Symbolic representation and retrieval of moving object trajectories. In: MIR 2004 - Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 227–234 (2004). https://doi.org/10.1145/1026711.1026749
Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 491–502 (2005). https://doi.org/10.1145/1066157.1066213
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings - International Conference on Data Engineering, pp. 673–684 (2002). https://doi.org/10.1109/ICDE.2002.994784
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007). https://doi.org/10.1007/s10618-007-0064-z
Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012). https://doi.org/10.1007/s10844-012-0196-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fu, Z., Zheng, K. (2022). Searching Similar Trajectories Based on Shape. In: Li, T., et al. Big Data. BigData 2022. Communications in Computer and Information Science, vol 1709. Springer, Singapore. https://doi.org/10.1007/978-981-19-8331-3_1
Download citation
DOI: https://doi.org/10.1007/978-981-19-8331-3_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8330-6
Online ISBN: 978-981-19-8331-3
eBook Packages: Computer ScienceComputer Science (R0)