Skip to main content

Searching Similar Trajectories Based on Shape

  • Conference paper
  • First Online:
Big Data (BigData 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1709))

Included in the following conference series:

  • 481 Accesses

Abstract

Similarity search in moving object trajectories is a fundamental task in spatio-temporal data mining and analysis. Different from conventional trajectory matching tasks, shape-based trajectory search (STS) aims to find all trajectories that are similar in shape to the query trajectory, which may be judged to be dissimilar based on their coordinates. STS can be useful in various real world applications, such as geography discovery, animal migration, weather forecasting, autonomous driving, etc. However, most of existing trajectory distance functions are designed to compare location-based trajectories and few can be directly applied to STS tasks. In order to match shape-based trajectories, we first convert them to a rotation-and-translation-invariant form. Next, we propose a distance function called shape-based distance (SBD) to calculate the accurate distance between two trajectories, which follows an align-based paradigm. Then, to accelerate STS, we propose a trajectory representation framework based on symbolic representation to support efficient rough match. Finally, extensive experiments on two real-world datasets demonstrate the effectiveness and efficiency of our framework.

Z. Fu—Contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://research.microsoft.com/en-us/projects/geolife.

  2. 2.

    https://gaia.didichuxing.com.

References

  1. Wang, S., Bao, Z., Culpepper, J.S., Sellis, T., Qin, X.: Fast large-scale trajectory clustering. Proc. VLDB Endow. 13(1), 29–42 (2019). https://doi.org/10.14778/3357377.3357380

    Article  Google Scholar 

  2. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings - International Conference on Data Engineering, vol. 4(c), pp. 900–911 (2011). https://doi.org/10.1109/ICDE.2011.5767890

  3. Sanchez, I., Aye, Z.M.M., Rubinstein, B.I.P., Ramamohanarao, K.: Fast trajectory clustering using Hashing methods. In: Proceedings of the International Joint Conference on Neural Networks, pp. 3689–3696 (2016). https://doi.org/10.1109/IJCNN.2016.7727674

  4. Astefanoaei, M., Cesaretti, P., Katsikouli, P., Goswami, M., Sarkar, R.: Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, pp. 279–288 (2018). https://doi.org/10.1145/3274895.3274943

  5. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: Proceedings - IEEE 34th International Conference on Data Engineering, ICDE 2018, pp. 617–628 (2018). https://doi.org/10.1109/ICDE.2018.00062

  6. Xie, M.: EDS: a segment-based distance measure for sub-trajectory similarity search. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1609–1610 (2014). https://doi.org/10.1145/2588555.2612665

  7. Yao, D., Cong, G., Zhang, C., Bi, J.: Computing trajectory similarity in linear time: a generic seed-guided neural metric learning approach. In: Proceedings - International Conference on Data Engineering, pp. 1358–1369 (2019). https://doi.org/10.1109/ICDE.2019.00123

  8. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings - International Conference on Data Engineering, pp. 816–825 (2007). https://doi.org/10.1109/ICDE.2007.367927

  9. Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: Proceedings - International Conference on Data Engineering, pp. 999–1010 (2015). https://doi.org/10.1109/ICDE.2015.7113351

  10. Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity query for trajectory of mobile objects. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 63–77. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36389-0_5

    Chapter  MATH  Google Scholar 

  11. Yu, C., Luo, L., Chan, L.L.H., Rakthanmanon, T., Nutanong, S.: A fast LSH-based similarity search method for multivariate time series. Inf. Sci. 476, 337–356 (2019). https://doi.org/10.1016/j.ins.2018.10.026

    Article  Google Scholar 

  12. Driemel, A., Silvestri, F.: Locality-sensitive hashing of curves. In: Leibniz International Proceedings in Informatics. LIPIcs, vol. 77, no. 614331, pp. 371–3716 (2017). https://arxiv.org/abs/1703.04040. https://doi.org/10.4230/LIPIcs.SoCG.2017.37

  13. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. In: Proceedings - International Conference on Data Engineering, pp. 1144–1155 (2012). https://doi.org/10.1109/ICDE.2012.42

  14. Vlachos, M., Gunopulos, D., Das, G.: Rotation invariant distance measures for trajectories. In: KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 707–712 (2004). https://doi.org/10.1145/1014052.1014144

  15. Chen, L., Özsu, M.T., Oria, V.: Symbolic representation and retrieval of moving object trajectories. In: MIR 2004 - Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 227–234 (2004). https://doi.org/10.1145/1026711.1026749

  16. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 491–502 (2005). https://doi.org/10.1145/1066157.1066213

  17. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings - International Conference on Data Engineering, pp. 673–684 (2002). https://doi.org/10.1109/ICDE.2002.994784

  18. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007). https://doi.org/10.1007/s10618-007-0064-z

    Article  MathSciNet  Google Scholar 

  19. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012). https://doi.org/10.1007/s10844-012-0196-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Z., Zheng, K. (2022). Searching Similar Trajectories Based on Shape. In: Li, T., et al. Big Data. BigData 2022. Communications in Computer and Information Science, vol 1709. Springer, Singapore. https://doi.org/10.1007/978-981-19-8331-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8331-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8330-6

  • Online ISBN: 978-981-19-8331-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics