Skip to main content

Identifying Urban Functional Regions by LDA Topic Model with POI Data

  • Conference paper
  • First Online:
Big Data (BigData 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1709))

Included in the following conference series:

  • 564 Accesses

Abstract

Identifying Urban Functional Regions (UFR) can achieve the rational aggregation of social resource space, realize urban economic and social functions, promote the deployment of urban infrastructure, radiate and drive the development of surrounding regions, so the identification of urban functional regions can promote the efficient development of cities. However, the traditional functional region identification method is mainly based on remote sensing mapping, which relies more on the natural geographical characteristics of the region to describe and identify the region, while the urban functional region is closely related to human activities, and the traditional functional region identification results are not ideal. Social data includes a series of data that reflect people’s activities and behaviors, such as trajectory data, social media data, and travel data, thus the analysis of social data can more effectively solve the difficulties of traditional mapping and identification. POI (Point of Interest) data, as a typical type of social data, can be used to identify urban functional regions. We apply the LDA topic model to the POI data, and propose a new urban functional region identification method, which makes full use of the POI data to reflect the activity categories of urban populations to characterize the features of regional functions and achieve a high degree of identification of urban functional regions. Through experimental verification on real data, the experimental results show that the proposed method can more accurately identify urban functions, which proves the method reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, C., Zhang, F., Mu, L., Gao, Y., Liu, Y.: Urban function recognition by integrating social media and street-level imagery. Environ. Plan. B Urban Anal. City Sci. 48(6), 1430–1444 (2021). https://doi.org/10.1177/2399808320935467

    Article  Google Scholar 

  2. Ramaswami, A., Russell, A., Culligan, P., Rahul Sharma, K., Kumar, E.: Meta-principles for developing smart, sustainable, and healthy cities. Science 352(6288), 940–943 (2016). https://doi.org/10.1126/science.aaf7160. Funding Information: The authors are grateful for support from NSF (Partnership for International Research and Education award 1243535 and Sustainability Research Networks award 1444745) and from the U.S. Agency for International Development and the National Academy of Sciences (Partnership for Enhanced Engagement in Research subgrant 2000002841)

  3. Hu, S., et al.: Urban function classification at road segment level using taxi trajectory data: a graph convolutional neural network approach. Comput. Environ. Urban Syst. 87, 101619 (2021). https://doi.org/10.1016/j.compenvurbsys.2021.101619

    Article  Google Scholar 

  4. Han, J., Chen, W.-Q., Zhang, L., Liu, G.: Uncovering the spatiotemporal dynamics of urban infrastructure development: a high spatial resolution material stock and ow analysis. Environ. Sci. Technol. 52(21), 12122–12132 (2018). https://doi.org/10.1021/acs.est.8b03111

    Article  Google Scholar 

  5. Xu, G., Zhou, Z., Jiao, L., Zhao, R.: Compact urban form and expansion pattern slow down the decline in urban densities: a global perspective. Land Use Policy 94, 104563 (2020). https://doi.org/10.1016/j.landusepol.2020.104563

    Article  Google Scholar 

  6. Xu, Y., Olmos, L., Abbar, S., Gonzalez, M.C.: Deconstructing laws of accessibility and facility distribution in cities. Sci. Adv. 6 (2020). https://doi.org/10.1126/sciadv.abb4112

  7. La Rosa, D., Privitera, R.: Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landscape Urban Plann. 109, 94–106 (2013). https://doi.org/10.1016/j.landurbplan.2012.05.012

    Article  Google Scholar 

  8. Henderson, J., Venables, A., Regan, T., Samsonov, I.: Building functional cities. Science 352, 946947 (2016)

    Article  Google Scholar 

  9. Morawska, L., et al.: Towards Urbanome the genome of the city to enhance the form and function of future cities. Nature Commun. 10, 1–3 (2019). https://doi.org/10.1038/s41467-019-11972-6

    Article  Google Scholar 

  10. Habitat, U.: Urbanization and development: emerging futures. World Cities Report 2016 (2016)

    Google Scholar 

  11. Ziwei, G., Weiwei, S., Penggen, C., Gang, Y., Xiangchao, M.: Identify urban functional zones using multi feature latent semantic fused information of high-spatial resolution remote sensing image and poi data. Remote Sens. Technol. Appl. 36(3), 618 (2021). https://doi.org/10.11873/j.issn.1004-0323.2021.3.0618

    Article  Google Scholar 

  12. Zhang, D., et al.: Identifying region-wide functions using urban taxicab trajectories. ACM Trans. Embed. Comput. Syst. 15, 1–19 (2016). https://doi.org/10.1145/2821507

    Article  Google Scholar 

  13. Volgmann, K., Rusche, K.: The geography of borrowing size: exploring spatial distributions for German urban regions. Tijdschrift voor Economische en Sociale Geografie 111, 60–79 (2019). https://doi.org/10.1111/tesg.12362

    Article  Google Scholar 

  14. Jiang, S., Alves, A., Rodrigues, F., Ferreira, J., Pereira, F.C.: Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 53, 36–46 (2015). https://doi.org/10.1016/j.compenvurbsys.2014.12.001. Special Issue on Volunteered Geographic Information

  15. Aubrecht, C., León Torres, J.A.: Evaluating multi-sensor nighttime earth observation data for identification of mixed vs. residential use in urban areas. Remote Sens. 8, 114 (2016). https://doi.org/10.3390/rs8020114

    Article  Google Scholar 

  16. Lin, T., et al.: Spatial pattern of urban functional landscapes along an urban-rural gradient: a case study in Xiamen City, China. Int. J. Appl. Earth Obs. Geoinf. 46, 22–30 (2016). https://doi.org/10.1016/j.jag.2015.11.014

    Article  Google Scholar 

  17. Yu, X., Ng, C.: Spatial and temporal dynamics of urban sprawl along two urban-rural transects: a case study of Guangzhou, china. Land-scape Urban Plann. 79, 96–109 (2007). https://doi.org/10.1016/j.landurbplan.2006.03.008

    Article  Google Scholar 

  18. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification, pp. 270–279 (2010). https://doi.org/10.1145/1869790.1869829

  19. Zhang, X., Du, S.: A linear Dirichlet mixture model for decomposing scenes: application to analyzing urban functional zonings. Remote Sens. Environ. 169, 37–49 (2015). https://doi.org/10.1016/j.rse.2015.07.017

    Article  Google Scholar 

  20. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 186–194. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2339530.2339561

  21. Yuan, N., Zheng, Y., Xie, X., Wang, Y., Zheng, K., Xiong, H.: Discovering urban functional zones using latent activity trajectories. IEEE Trans. Knowl. Data Eng. 27, 712–725 (2015). https://doi.org/10.1109/TKDE.2014.2345405

    Article  Google Scholar 

  22. Gao, S., Janowicz, K., Couclelis, H., et al.: Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 21, 446–467 (2017). https://doi.org/10.1111/tgis.12289

    Article  Google Scholar 

  23. Yao, Y., et al.: Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geograph. Inf. Sci. 31, 1–24 (2016). https://doi.org/10.1080/13658816.2016.1244608

    Article  Google Scholar 

  24. Tu, W., et al.: Portraying urban functional zones by coupling remote sensing imagery and human sensing data. Remote Sens. 10, 141 (2018). https://doi.org/10.3390/rs10010141

    Article  Google Scholar 

  25. Shen, Y., Karimi, K.: Urban function connectivity: characterisation of functional urban streets with social media check-in data. Cities 55, 9–21 (2016). https://doi.org/10.1016/j.cities.2016.03.013

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Natural Science Foundation of China under Grant No. 61972317, No. 61972318, the Natural Science Foundation of Shaanxi Province of China under Grant No. 2021JM068, the Shaanxi Province Training Program of Innovation and Entrepreneurship for Undergraduates under Grant No. S202110699625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Zhang, L., Wang, H., Wang, S. (2022). Identifying Urban Functional Regions by LDA Topic Model with POI Data. In: Li, T., et al. Big Data. BigData 2022. Communications in Computer and Information Science, vol 1709. Springer, Singapore. https://doi.org/10.1007/978-981-19-8331-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8331-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8330-6

  • Online ISBN: 978-981-19-8331-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics