Skip to main content

Secure EHR Sharing Scheme Based on Limited Sanitizable Signature

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1726))

Included in the following conference series:

  • 511 Accesses

Abstract

Many sanitizable signature schemes have been proposed to facilitate and secure the secondary use of medical data. These schemes allow a patient, authorized by the doctor, to modify and re-sign his/her electronic health record (EHR) to hide sensitive information and the new signature can be verified successfully. However, this may lead to fraud because patients may forge medical records for profit. To further standardize sanitization and reduce the sanitizers power, this paper proposes a new limited sanitizable signature scheme, which allows the signer to not only decide which message blocks can be modified but also determine the maximum of modifiable blocks and the expiration time for sanitization. We also propose a secure EHR sharing scheme suitable for medical scenarios based on the above limited sanitizable signature to realize privacy preserving medical data sharing. Finally, the security analysis and experimental results show that the security and efficiency of our scheme can be accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\textbf{Redact}\) in [20] is also responsible for modifying the message m based on the MOD, but it allows to remove blocks rather than change, and can be considered a special case of \(\textbf{Sanit}\).

References

  1. Xu, Z., Luo, M., Kumar, N., Vijayakumar, P., Li, L.: Privacy-protection scheme based on sanitizable signature for smart mobile medical scenarios. Wireless Commun. Mob. Comput. 2020 (2020)

    Google Scholar 

  2. Shen, W., Qin, J., Yu, J., Hao, R., Hu, J.: Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 14(2), 331–346 (2018)

    Article  Google Scholar 

  3. Xu, Y., Ding, L., Cui, J., Zhong, H., Yu, J.: PP-CSA: a privacy-preserving cloud storage auditing scheme for data sharing. IEEE Syst. J. 15(3), 3730–3739 (2020)

    Article  Google Scholar 

  4. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_10

    Chapter  Google Scholar 

  5. Thornton, D., Brinkhuis, M., Amrit, C., Aly, R.: Categorizing and describing the types of fraud in healthcare. Procedia Comput. Sci. 64, 713–720 (2015)

    Article  Google Scholar 

  6. Bossuat, A., Bultel, X.: Unlinkable and invisible \(\gamma \)-Sanitizable signatures. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 251–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_10

    Chapter  MATH  Google Scholar 

  7. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_13

    Chapter  Google Scholar 

  8. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_25

    Chapter  Google Scholar 

  9. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006). https://doi.org/10.1007/11927587_28

    Chapter  Google Scholar 

  10. Bultel, X., Lafourcade, P., Lai, R.W.F., Malavolta, G., Schröder, D., Thyagarajan, S.A.K.: Efficient invisible and unlinkable sanitizable signatures. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 159–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_6

    Chapter  Google Scholar 

  11. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2), 498–546 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bultel, X., Lafourcade, P.: Unlinkable and strongly accountable sanitizable signatures from verifiable ring signatures. In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 203–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_10

    Chapter  Google Scholar 

  13. Emura, K., Hayashi, T., Ishida, A.: Group signatures with time-bound keys revisited: a new model, an efficient construction, and its implementation. IEEE Trans. Dependable Secure Comput. 17(2), 292–305 (2017)

    Article  Google Scholar 

  14. Liu, J.K., Chu, C.K., Chow, S.S., Huang, X., Au, M.H., Zhou, J.: Time-bound anonymous authentication for roaming networks. IEEE Trans. Inf. Forensics Secur. 10(1), 178–189 (2014)

    Article  Google Scholar 

  15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45572-3_1

    Chapter  Google Scholar 

  16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  17. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53997-8_2

    Chapter  MATH  Google Scholar 

  20. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29101-2_2

    Chapter  MATH  Google Scholar 

  21. Huang, Q., Chen, L., Wang, C.: A parallel secure flow control framework for private data sharing in mobile edge cloud. IEEE Trans. Parallel Distrib. Syst. 33(12), 4638–4653 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Yi, B., Zhan, Y., Huang, M. (2022). Secure EHR Sharing Scheme Based on Limited Sanitizable Signature. In: Ahene, E., Li, F. (eds) Frontiers in Cyber Security. FCS 2022. Communications in Computer and Information Science, vol 1726. Springer, Singapore. https://doi.org/10.1007/978-981-19-8445-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8445-7_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8444-0

  • Online ISBN: 978-981-19-8445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics