Skip to main content

Quantum Information Splitting Scheme of Arbitrary Three-Qubit State by Using a Four-Qubit Cluster State and a Bell State

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2022)

Abstract

With the rapid development of Internet technology, the confidentiality of information content and network security are facing severe challenges, and quantum teleportation ensures the absolute security of information transmission based on its basic characteristics. In this paper, we propose a scheme for quantum information splitting of arbitrary three-qubit state by using a four-qubit cluster state and a Bell state. The scheme only needs to perform two Bell state measurement operations and two single-qubit measurement operations, and Bob can reconstruct the transmitted arbitrary three-qubit state by means of appropriate unitary operations. Compared with other information splitting schemes of arbitrary three-qubit state, our scheme is characterized by higher transmission efficiency. Then we use channel authentication method to ensure the communication security of our scheme under different attack scenarios. Furthermore, we take comparisons with the other quantum information splitting schemes in five aspects of quantum information bits transmitted, necessary operations, consumption of quantum resource, consumption of classical resource and intrinsic efficiency. It is concluded that our scheme has significant advantages of higher intrinsic efficiency and high security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aili, M., Abulizi, A.: Dense coding in a three-qubit Heisenberg XXZ spin chain with three-site interactions. Int. J. Theor. Phys. 58(2), 364–371 (2019)

    Article  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W.F., Yang, Y.G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Z., Zhang, Y., Qi, J.: Quantum teleportation of an arbitrary four-qubit state via three-uniform state of eight qubits. Mod. Phys. Lett. A 36(05), 2150026 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y.: Quantum information splitting of an arbitrary three-qubit state using a seven-qubit entangled state. Int. J. Theor. Phys. 53(2), 524–532 (2014)

    Article  MATH  Google Scholar 

  6. Fu, Y., Hong, Y., Quek, T.Q., Wang, H., Shi, Z.: Scheduling policies for quantum key distribution enabled communication networks. IEEE Wirel. Commun. Lett. 9(12), 2126–2129 (2020)

    Article  Google Scholar 

  7. Geihs, M., et al.: The status of quantum-key-distribution-based long-term secure internet communication. IEEE Trans. Sustain. Comput. 6(1), 19–29 (2019)

    Article  Google Scholar 

  8. Guo, Y., Peng, Q., Liao, Q., Wang, Y.: Trans-media continuous-variable quantum key distribution via untrusted entanglement source. IEEE Photonics J. 13(2), 1–12 (2021)

    Google Scholar 

  9. Hao, N., Li, Z.H., Bai, H.Y., Bai, C.M.: A new quantum secret sharing scheme based on mutually unbiased bases. Int. J. Theor. Phys. 58(4), 1249–1261 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heo, J., et al.: Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  11. Hou, K., Bao, D., Zhu, C., Yang, Y.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18(4), 1–19 (2019)

    Article  MATH  Google Scholar 

  12. Hu, X.M., Guo, Y., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)

    Google Scholar 

  13. Huang, C.C., Farn, K.J.: A study on e-Taiwan promotion information security governance programs with e-government implementation of information security management standardization. Int. J. Netw. Secur. 18(3), 565–578 (2016)

    Google Scholar 

  14. Huang, Z., Ye, Y., Luo, D.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17(4), 1–11 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, A., Garhwal, S.: State-of-the-art survey of quantum cryptography. Arch. Comput. Methods Eng. 28(5), 3831–3868 (2021)

    Article  MathSciNet  Google Scholar 

  16. Li, M., Liu, J., Hong, W.: Quantum information splitting of a single-qubit via genuine four-qubit entangled states. Acta Sinica Quantum Optica 19(2), 141–145 (2013)

    Google Scholar 

  17. Nie, Y., Li, Y., Liu, J., Sang, M.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9(10), 641–652 (2015)

    Article  Google Scholar 

  19. Qin, H., Tso, R.: Efficient quantum secret sharing based on polarization and orbital angular momentum. J. Chin. Inst. Eng. 42(2), 143–148 (2019)

    Article  Google Scholar 

  20. Ramírez, M.D.G., Falaye, B.J., Sun, G.H., Cruz-Irisson, M., Dong, S.H.: Quantum teleportation and information splitting via four-qubit cluster state and a bell state. Front. Phys. 12(5), 1–9 (2017)

    Article  Google Scholar 

  21. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sk, R., Dash, T., Panigrahi, P.K.: Quantum information splitting of an arbitrary three-qubit state by using three sets of GHz states. IET Quantum Commun. 2(3), 122–135 (2021)

    Article  Google Scholar 

  24. Wei, J., Dai, H.Y., Shi, L., Zhao, S., Zhang, M.: Deterministic quantum controlled teleportation of arbitrary multi-qubit states via partially entangled states. Int. J. Theor. Phys. 57(10), 3104–3111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao-Feng, Y., Yi-Min, L., Wen, Z., Zhan-Jun, Z.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53(1), 49 (2010)

    Article  MATH  Google Scholar 

  26. Xiu-li, T., Ting, Z., Xian-ming, W., Jing, X.: Splitting quantum information via six-qubit maximally entangled state. Chin. J. Quantum Electron. 29(5), 577 (2012)

    Google Scholar 

  27. Xu, G., Zhou, T., Chen, X.B., Wang, X.: Splitting an arbitrary three-qubit state via a five-qubit cluster state and a bell state. Entropy 24(3), 381 (2022)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Li, D., Liu, M., Chen, J.: Quantum information splitting of arbitrary two-qubit state via a five-qubit cluster state and a bell-state. Int. J. Theor. Phys. 59(1), 187–199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n+ 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57(1), 175–183 (2018)

    Article  MATH  Google Scholar 

  30. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14(10), 3835–3844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Y.S., Wang, F., Luo, M.X.: Efficient superdense coding with W states. Int. J. Theor. Phys. 57(7), 1935–1941 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62172060), Sichuan Science and Technology Program (2022YFG0316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Zhou, J., Yang, X., Tan, Y., Zheng, Y., Liu, X. (2022). Quantum Information Splitting Scheme of Arbitrary Three-Qubit State by Using a Four-Qubit Cluster State and a Bell State. In: Ahene, E., Li, F. (eds) Frontiers in Cyber Security. FCS 2022. Communications in Computer and Information Science, vol 1726. Springer, Singapore. https://doi.org/10.1007/978-981-19-8445-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8445-7_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8444-0

  • Online ISBN: 978-981-19-8445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics