Skip to main content

LightGBM-RF: A Hybrid Model for Anomaly Detection in Smart Building

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1726))

Included in the following conference series:

  • 475 Accesses

Abstract

Smart building uses sophisticated and integrated building technology and allows numerous IoT systems to interact as well as provide convenience to its users. Unfortunately, smart buildings have become a point of attraction for cybercriminals. Due to the fact that the majority of these IoT devices lack the memory and computing power required for robust security operations, they are inherently vulnerable. IoT devices are consequently vulnerable to various attacks. Therefore, a single attack on network systems or devices can cause serious harm to the security of data as well as privacy in a smart building.

This paper presents LightGBM-RF, a machine learning model that accurately detects anomalies in a smart building by utilizing a combination of Light Gradient Boosting Machine and Random Forest algorithms. The model detects anomalies with an accuracy of 99.19%, thereby providing an effective scheme for detecting different attack families, and the potential to significantly improve security in smart buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Statista. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed 11 Sep 2022

  2. Kuyucu, M.K., Bahtiyar, serif, Ince, G.: Security and privacy in the smart home: a survey of issues and mitigation strategies. In: 2019 4th International Conference on Computer Science and Engineering (UBMK) (2019). https://doi.org/10.1109/ubmk.2019.8907037

  3. Atha, D.J., Jahanshahi, M.R.: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 17, 1110–1128 (2017). https://doi.org/10.1177/1475921717737051

    Article  Google Scholar 

  4. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018). https://doi.org/10.1145/3219819.3219845

  5. Lopez, F., et al.: Categorization of anomalies in smart manufacturing systems to support the selection of detection mechanisms. IEEE Robot. Autom. Lett. 2, 1885–1892 (2017). https://doi.org/10.1109/lra.2017.2714135

    Article  Google Scholar 

  6. Ramotsoela, D., Abu-Mahfouz, A., Hancke, G.: A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study. Sensors 18, 2491 (2018). https://doi.org/10.3390/s18082491

    Article  Google Scholar 

  7. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  8. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Clust. Comput. 22(1), 949–961 (2017). https://doi.org/10.1007/s10586-017-1117-8

    Article  Google Scholar 

  9. Malaiya, R.K., Kwon, D., Kim, J., Suh, S.C., Kim, H., Kim, I.: An empirical evaluation of deep learning for network anomaly detection. In: 2018 International Conference on Computing, Networking and Communications (ICNC) (2018). https://doi.org/10.1109/iccnc.2018.8390278

  10. Xin, Y., et al.: Machine learning and deep learning methods for cybersecurity. IEEE Access 6, 35365–35381 (2018). https://doi.org/10.1109/access.2018.2836950

    Article  Google Scholar 

  11. Iakovidis, D.K., Georgakopoulos, S.V., Vasilakakis, M., Koulaouzidis, A., Plagianakos, V.P.: Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification. IEEE Trans. Med. Imaging 37, 2196–2210 (2018). https://doi.org/10.1109/tmi.2018.2837002

    Article  Google Scholar 

  12. Latif, S., Usman, M., Rana, R., Qadir, J.: Phonocardiographic sensing using deep learning for abnormal heartbeat detection. IEEE Sens. J. 18, 9393–9400 (2018). https://doi.org/10.1109/jsen.2018.2870759

    Article  Google Scholar 

  13. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  14. Seebock, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT. IEEE Trans. Med. Imaging 39, 87–98 (2020). https://doi.org/10.1109/tmi.2019.2919951

    Article  Google Scholar 

  15. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. Proc. AAAI Conf. Artif. Intell. 33, 9428–9433 (2019). https://doi.org/10.1609/aaai.v33i01.33019428

    Article  Google Scholar 

  16. Sipple, J.: Interpretable, multidimensional, multimodal anomaly detection with negative sampling for detection of device failure. In: International Conference on Machine Learning, pp. 9016–9025 (2020)

    Google Scholar 

  17. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. (2016). https://doi.org/10.1093/bib/bbw068

    Article  Google Scholar 

  18. Reyes, E., Estevez, P.A.: Transformation based deep anomaly detection in astronomical images. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020). https://doi.org/10.1109/ijcnn48605.2020.9206997

  19. Fisher, W.D., Camp, T.K., Krzhizhanovskaya, V.V.: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection. J. Comput. Sci. 20, 143–153 (2017). https://doi.org/10.1016/j.jocs.2016.11.016

    Article  Google Scholar 

  20. Flach, M., et al.: Multivariate anomaly detection for earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dyn. 8, 677–696 (2017). https://doi.org/10.5194/esd-8-677-2017

    Article  Google Scholar 

  21. Jiang, T., Li, Y., Xie, W., Du, Q.: Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 58, 4666–4679 (2020). https://doi.org/10.1109/tgrs.2020.2965961

    Article  Google Scholar 

  22. Malik, R., Singh, Y., Sheikh, Z.A., Anand, P., Singh, P.K., Workneh, T.C.: An improved deep belief network IDS on IOT-based network for traffic systems. J. Adv. Transp. 2022, 1–17 (2022). https://doi.org/10.1155/2022/7892130

    Article  Google Scholar 

  23. The TON_IoT datasets. https://research.unsw.edu.au/projects/toniot-datasets. Accessed 11 Sep 2022

  24. Khorasgani, H., Biswas, G.: A methodology for monitoring smart buildings with incomplete models. Appl. Soft Comput. 71, 396–406 (2018). https://doi.org/10.1016/j.asoc.2018.06.018

    Article  Google Scholar 

  25. Dhamor, T., Bhat, S., Thenmalar, S.: Dynamic approaches for detection of DDoS threats using machine learning. Ann. Rom. Soc. Cell Biol. 25, 13663–13673 (2021)

    Google Scholar 

  26. DDoS Evaluation Dataset (CIC-DDoS2019). https://www.unb.ca/cic/datasets/ddos2019.html. Accessed 11 Sep 2022

  27. Sumathi, S., Karthikeyan, N.: Search for effective data mining algorithm for network-based intrusion detection (NIDS)-DDOS attacks. In: 2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW) (2018). https://doi.org/10.1109/i2c2sw45816.2018.8997522

  28. KDD cup 1999 data, the UCI KDD archive information and computer science University of California. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed 11 Sep 2022

  29. DARP dataset. https://www.data.world/datasets/darp. Accessed 11 Sep 2022

  30. Ajeetha, G., Madhu Priya, G.: Machine learning based DDOS attack detection. In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) (2019).https://doi.org/10.1109/i-pact44901.2019.8959961

  31. Internet Assigned Numbers Authority: Service name and transport protocol port number registry. https://www.iana.org/assignments/service-names-port-numbers/service-namesport-numbers.xhtml. Accessed 11 Sep 2022

  32. Wehbi, K., Hong, L., Al-salah, T., Bhutta, A.A.: A survey on machine learning based detection on DDoS attacks for IOT systems. In: 2019 SoutheastCon (2019). https://doi.org/10.1109/southeastcon42311.2019.9020468

  33. Soe, Y.N., Feng, Y., Santosa, P.I., Hartanto, R., Sakurai, K.: Machine learning-based IOT-botnet attack detection with sequential architecture. Sensors 20, 4372 (2020). https://doi.org/10.3390/s20164372

    Article  Google Scholar 

  34. UCI Machine Learning Repository: Detection_of_IoT_botnet_attacks_N_BaIoT data set. https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT. Accessed 11 Sep 2022

  35. Moustafa, N.: A new distributed architecture for evaluating AI-based security systems at the edge: network ToN_IoT datasets. Sustain. Cities Soc. 72, 102994 (2021). https://doi.org/10.1016/j.scs.2021.102994

    Article  Google Scholar 

  36. Moustafa, N.: New generations of internet of things datasets for cybersecurity applications-based machine learning: ToN_IoT datasets. In: Proceedings of the eResearch Australasia Conference, Brisbane, Australia, pp. 21–25 (2019)

    Google Scholar 

  37. Lee, T.-H., Ullah, A., Wang, R.: Bootstrap aggregating and random forest. In: Fuleky, P. (ed.) Macroeconomic Forecasting in the Era of Big Data. ASTAE, vol. 52, pp. 389–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31150-6_13

    Chapter  Google Scholar 

  38. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  39. Jin, D., Lu, Y., Qin, J., Cheng, Z., Mao, Z.: SwiftIDS: Real-time intrusion detection system based on LIGHTGBM and parallel intrusion detection mechanism. Comput. Secur. 97, 101984 (2020). https://doi.org/10.1016/j.cose.2020.101984

    Article  Google Scholar 

  40. Xiaosong, Z.H.A.O., Qiangfu, Z.H.A.O.: Stock prediction using optimized LIGHTGBM based on cost awareness. In: 2021 5th IEEE International Conference on Cybernetics (CYBCONF) (2021). https://doi.org/10.1109/cybconf51991.2021.9464148

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otuekong Ekpo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekpo, O., Takyi, K., Gyening, RM.O.M. (2022). LightGBM-RF: A Hybrid Model for Anomaly Detection in Smart Building. In: Ahene, E., Li, F. (eds) Frontiers in Cyber Security. FCS 2022. Communications in Computer and Information Science, vol 1726. Springer, Singapore. https://doi.org/10.1007/978-981-19-8445-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8445-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8444-0

  • Online ISBN: 978-981-19-8445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics