Skip to main content

Natural Language Query for Technical Knowledge Graph Navigation

  • Conference paper
  • First Online:
Data Mining (AusDM 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1741))

Included in the following conference series:

  • 446 Accesses

Abstract

Technical knowledge graphs are difficult to navigate. To support users with no coding experience, one can use traditional structured HTML form controls, such as drop-down lists and check-boxes, to construct queries. However, this requires multiple clicks and selections. Natural language queries, on the other hand, are more convenient and less restrictive for knowledge graphs navigation. In this paper, we propose a system that enables natural language queries against technical knowledge graphs. Given an input utterance (i.e., a query in human language), we first perform Named Entity Recognition (NER) to identify domain specific entity mentions as node names, entity types as node labels, and question words (e.g., what, how many and list) as keywords of a structured query language before the rule-based formal query constructions. Three rules are exploited to generate a valid structured formal query. The web-based interactive application is developed to help maintainers access industrial maintenance knowledge graph which is constructed from text data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GraphQL: https://graphql.org/learn/.

  2. 2.

    Neo4j Cypher: https://neo4j.com/docs/cypher-manual/current/).

  3. 3.

    Freebase: https://developers.google.com/freebase.

  4. 4.

    Wikidata: https://www.wikidata.org.

  5. 5.

    \(\lambda \)-calculus: https://plato.stanford.edu/entries/lambda-calculus/.

  6. 6.

    YAGO: https://yago-knowledge.org.

  7. 7.

    DBpedia: https://www.dbpedia.org/resources/knowledge-graphs/.

  8. 8.

    MITIE. https://github.com/mit-nlp/MITIE.

  9. 9.

    https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html.

  10. 10.

    Echidna: the visualisation of the maintenance KG with form controls to support navigation, is available at https://nlp-tlp.org/maintenance_kg/.

  11. 11.

    ISO 15926-4: https://www.iso.org/standard/73830.html.

References

  1. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: Flair: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 54–59 (2019)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544 (2013)

    Google Scholar 

  5. Bikaun, T., Hodkiewicz, M.: Semi-automated estimation of reliability measures from maintenance work order records. In: PHM Society European Conference, vol. 6, p. 9 (2021)

    Google Scholar 

  6. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  7. Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fischer, A.: Introduction to neural network based approaches for question answering over knowledge graphs. arXiv preprint arXiv:1907.09361 (2019)

  8. Dahl, D.A., et al.: Expanding the scope of the ATIS task: the ATIS-3 corpus. In: Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey, 8–11 March 1994 (1994)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Dong, L., Lapata, M.: Language to logical form with neural attention. arXiv preprint arXiv:1601.01280 (2016)

  11. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

    Google Scholar 

  12. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: Proceedings of the 2018 International Conference on Management of Data, pp. 1433–1445 (2018)

    Google Scholar 

  13. Grishman, R., Sundheim, B.: Message understanding conference-6: a brief history. In: COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics (1996). https://aclanthology.org/C96-1079

  14. Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Developing a natural language interface to complex data. ACM Trans. Database Syst. (TODS) 3(2), 105–147 (1978)

    Article  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Jia, R., Liang, P.: Data recombination for neural semantic parsing. arXiv preprint arXiv:1606.03622 (2016)

  17. Kirsch, R.A.: Computer interpretation of English text and picture patterns. IEEE Trans. Electron. Comput. 4, 363–376 (1964)

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  19. Lin, X.V., Socher, R., Xiong, C.: Bridging textual and tabular data for cross-domain text-to-SQL semantic parsing. arXiv preprint arXiv:2012.12627 (2020)

  20. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1162. https://aclanthology.org/D14-1162

  21. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Louisiana, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/N18-1202. https://aclanthology.org/N18-1202

  22. Pourhabibi, T., Ong, K.L., Kam, B.H., Boo, Y.L.: Fraud detection: a systematic literature review of graph-based anomaly detection approaches. Decis. Support Syst. 133, 113303 (2020)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report. California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  24. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  25. Sorokin, D.: Knowledge graphs and graph neural networks for semantic parsing (2021)

    Google Scholar 

  26. Stewart, M., Hodkiewicz, M., Liu, W., French, T.: MWO2KG and Echidna: constructing and exploring knowledge graphs from maintenance data. In: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability (in press)

    Google Scholar 

  27. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  28. Sun, C., et al.: A natural language interface for querying graph databases. Master thesis, Massachusetts Institute of Technology (2018)

    Google Scholar 

  29. Tang, L.R., Mooney, R.J.: Using multiple clause constructors in inductive logic programming for semantic parsing. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 466–477. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_40

    Chapter  Google Scholar 

  30. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

    Google Scholar 

  31. Weizenbaum, J.: Eliza—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  32. Wilks, Y., Fass, D.: The preference semantics family. Comput. Math. Appl. 23(2–5), 205–221 (1992)

    Article  MATH  Google Scholar 

  33. Woods, W.A.: Progress in natural language understanding: an application to lunar geology. In: Proceedings of the June 4–8, 1973, National Computer Conference and Exposition, pp. 441–450 (1973)

    Google Scholar 

  34. Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase via relation extraction and textual evidence. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2016)

    Google Scholar 

  35. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. arXiv preprint arXiv:1910.11470 (2019)

  36. Yih, S.W., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: Proceedings of the Joint Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint Conference on Natural Language Processing of the AFNLP (2015)

    Google Scholar 

  37. Yih, W., Richardson, M., Meek, C., Chang, M.W., Suh, J.: The value of semantic parse labeling for knowledge base question answering. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 201–206 (2016)

    Google Scholar 

  38. Yu, T., et al.: CoSQL: a conversational text-to-SQL challenge towards cross-domain natural language interfaces to databases. arXiv preprint arXiv:1909.05378 (2019)

  39. Yu, T., et al.: Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task (2018)

    Google Scholar 

  40. Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic programming. In: AAAI/IAAI, vol. 2 (1996)

    Google Scholar 

  41. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: structured classification with probabilistic categorial grammars. arXiv preprint arXiv:1207.1420 (2012)

  42. Zheng, W., Cheng, H., Zou, L., Yu, J.X., Zhao, K.: Natural language question/answering: let users talk with the knowledge graph. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 217–226 (2017)

    Google Scholar 

  43. Zhong, V., Xiong, C., Socher, R.: Seq2SQL: generating structured queries from natural language using reinforcement learning. CoRR abs/1709.00103 (2017)

    Google Scholar 

Download references

Acknowledgment

This research is supported by the Australian Research Council through the Centre for Transforming Maintenance through Data Science (grant number IC180100030), funded by the Australian Government. We thank the reviewers for their insightful comments, and Tyler Bikaun for his proofreading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Stewart, M., Liu, W., French, T., Hodkiewicz, M. (2022). Natural Language Query for Technical Knowledge Graph Navigation. In: Park, L.A.F., et al. Data Mining. AusDM 2022. Communications in Computer and Information Science, vol 1741. Springer, Singapore. https://doi.org/10.1007/978-981-19-8746-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8746-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8745-8

  • Online ISBN: 978-981-19-8746-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics