Abstract
Literature in behavioral economics and socioeconomics tells us that the public’s sentiment expression affects individual decision-making and hence the market collective decision-making. In this paper, we investigate whether public sentiment drives stock market performance. To be specific, we look at whether there is an association between changes in the Dow Jones Industrial Average (DJIA) and sentiment expression by using a large-scale comprehensive dataset of emotional state swings obtained from Twitter. We analyze relevant textual content on daily Twitter feeds using two sentiment quantification tools: FinBert, which is a categorical indicator that captures positive, neutral, and negative sentiment, and XLNet, which quantifies public sentiment from three types of moods (Positive, Neutral and Negative). Based on the time series dataset of the sentiment indicators, the relationship between public sentiment and DJIA index value is studied through Granger causal analysis and self-organizing fuzzy neural network. In addition, the changes in DJIA closing prices are predicted. Our results show that the accuracy of DJIA predictions can be significantly improved by including information on public sentiment. We have achieved state-of-the-art accuracy when predicting the daily up and down movement of the Dow Jones Industrial Average closing prices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fama, E.F.: Efficient capital markets: a review of theory and empirical. J. Finan. 25(2), 383–417 (1970)
Kendall, M.G., Hill, A.B.: The analysis of economic time-series-part I: prices. J. Roy. Stat. Soc. 116(1), 11–34 (1953)
Larson, A.: Measurement of a random process in futures prices. Proc. Annual Meet. 33, 101–112 (1960)
Fama, E.F.: Efficient capital markets: II. J. Finan. 46(5), 1575 (1991). https://doi.org/10.2307/2328565
Sewell, M. (2022) History of the Efficient Market Hypothesis. Research Note, 11 (04): 04, UCL Computer Science. https://www.ucl.ac.uk/computer-science/. Accessed 30 Oct 2022
Shiller, R.J.: From efficient markets theory to behavioral finance. J. Econ. Perspect. 17(1), 83–104 (2003)
Butler, K.C., Malaikah, S.J.: Efficiency and inefficiency in thinly traded stock markets: Kuwait and Saudi Arabia. J. Bank. Finan. 16(1), 197–210 (1992). https://doi.org/10.1016/0378-4266(92)90085-E
Kavussanos, M.G., Dockery, E.: A multivariate test for stock market efficiency: the case of ASE. Appl. Finan. Econ. 11(5), 573–579 (2001). https://doi.org/10.1080/09603100010013006
Schwert, G.W.: Analomies and market efficiency. Handb. Econ. Finan. 1, 939–974 (2003). http://www.nber.org/papers/w9277. Accessed 30 Oct 2022
Bouman, S., Jacobsen, B.: The halloween indicator, “Sell in May and Go Away’’: another puzzle. Am. Econ. Rev. 92(5), 1618–1635 (2002)
Bailey, W., Kumar, A., Ng, D.: Behavioral biases of mutual fund investors. J. Finan. Econ. 102(1), 1–27 (2011). https://doi.org/10.1016/j.jfineco.2011.05.002
Bartram, S.M., Grinblatt, M.: Global market inefficiencies. J. Finan. Econ. 139(1), 234–259 (2021). https://doi.org/10.1016/j.jfineco.2020.07.011
Gruhl, D., Guha, R., Kumar, R., et al.: The predictive power of online chatter. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 78–87 (2005). https://doi.org/10.1145/1081870.1081883
Mishne, G., Glance, N.: Predicting movie sales from blogger sentiment. In: AAAI Spring Symposium - Technical Report, SS-06-03, pp. 155–158 (2006)
Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings - 2010 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010, vol. 1, pp. 492–499 (2010). https://doi.org/10.1109/WI-IAT.2010.63
Choi, H., Varian, H.: Predicting the present with google trends. Econ. Rec. 88(SUPPL.1), 2–9 (2012). https://doi.org/10.1111/j.1475-4932.2012.00809.x
Gilbert, E., Karahalios, K.: Widespread worry and the stock market. In: ICWSM 2010 - Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, pp. 58–65 (2010)
Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011). https://doi.org/10.1016/j.jocs.2010.12.007
Goel, A., Mittal, A.: Stock prediction using twitter sentiment analysis. Cs229.Stanford.Edu, (December), pp. 1–5 (2012). http://cs229.stanford.edu/proj2011/GoelMittal-StockMarketPredictionUsingTwitterSentimentAnalysis.pdf. Accessed 30 Oct 2022
Gokulakrishnan, B., Priyanthan, P., Ragavan, T., Prasath, N., Perera, A.: Opinion mining and sentiment analysis on a Twitter data stream. In: International Conference on Advances in ICT for Emerging Regions (ICTer2012), pp. 182–188 (2012). https://doi.org/10.1109/ICTer.2012.6423033
Choy, M.: Effective listings of function stop words for Twitter. Int. J. Adv. Comput. Sci. Appl. 3(6) (2012). https://doi.org/10.14569/ijacsa.2012.030602
Kharde, V., Sonawane, S.S.: Sentiment analysis of twitter data: a survey of techniques. Int. J. Comput. Appl. 139(11), 5–15 (2016). https://doi.org/10.5120/ijca2016908625
Yang, Z., et al.: XLNet: generalized autoregressive pretraining for Language Understanding (2020). arXiv.org. https://arxiv.org/abs/1906.08237?source=techstories.org. Accessed 30 Oct 2022
Mustapha, M., Krasnashchok, K., Al Bassit, A., Skhiri, S.: Privacy policy classification with XLNet (Short Paper). In: Garcia-Alfaro, J., Navarro-Arribas, G., Herrera-Joancomarti, J. (eds.) DPM/CBT -2020. LNCS, vol. 12484, pp. 250–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66172-4_16
Malo, P., et al.: Good debt or bad debt: detecting semantic orientations in economic texts. J. Assoc. Inf. Sci. Technol. 65(4), 782–796 (2013). https://doi.org/10.1002/asi.23062
Babu, N.V., Rawther, F.A.: Multiclass sentiment analysis in text and emoticons of twitter data: a review. Trans. Comput. Sci. Comput. Intell., 61–68 (2021). https://doi.org/10.1007/978-3-030-49500-8_6
Adoma, A.F., Henry, N.-M., Chen, W.: Comparative analyses of Bert, Roberta, Distilbert, and xlnet for text-based emotion recognition. In: 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (2020). https://doi.org/10.1109/iccwamtip51612.2020.9317379
Hussein, S.: Twitter Sentiments Dataset. Mendeley Data, V. 1 (2021). https://doi.org/10.17632/z9zw7nt5h2.1
Colacicchi, L.: Comparison and fine-tuning of methods for financial sentiment analysis (2022). https://dke.maastrichtuniversity.nl/jan.niehues/wp-content/uploads/2022/01/Colacicchi-Thesis.pdf. Accessed 30 Oct 2022
Gao, Z., Feng, A., Song, X., Wu, X.: Target-dependent sentiment classification with BERT. IEEE Access 7, 154290–154299 (2019). https://doi.org/10.1109/ACCESS.2019.2946594
Liu, Z., et al.: Finbert: A pre-trained financial language representation model for financial text mining. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence [Preprint] (2020). https://doi.org/10.24963/ijcai.2020/622
Gadri, S., et al.: Sentiment analysis: developing an efficient model based on machine learning and deep learning approaches. In: Intelligent Computing & Optimization, pp. 237–247 (2022). https://doi.org/10.1007/978-3-030-93247-3_24
Dusane, P., Sujatha, G.: Events of interest extraction from forensic timeline using Natural Language Processing (NLP). In: Proceedings of International Conference on Deep Learning, Computing and Intelligence, pp. 83–94 (2022). https://doi.org/10.1007/978-981-16-5652-1_7
Hiemstra, C., Jones, J.D.: Testing for linear and nonlinear granger causality in the stock price-volume. J. Finan. 49(5), 1639–1664 (1994)
Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–38 (1969)
Shojaie, A., Fox, E.B.: Granger causality: a review and recent advances. Ann. Rev. Stat. Appl. 9, 289–319 (2022). https://doi.org/10.1146/annurev-statistics-040120-010930
Kuremoto, T., Obayashi, M., Kobayashi, K.: Forecasting time series by SOFNN with reinforcement learning (2015). https://www.semanticscholar.org/paper/Forecasting-Time-Series-by-SOFNN-with-Reinforcement-Kuremoto-Obayashi/8a5ce65e52077303b8dcbe39a3953219e910ca3f/figure/12. Accessed 30 Oct 2022
Leng, G., Ray, A., Mcginnity, T.M., Coleman, S., Maguire, L., Vance, P.: An Interval Type-2 Fuzzy Neural Network for Cognitive Decisions (2014). https://www.researchgate.net/publication/266849980_An_Interval_Type-2_Fuzzy_Neural_Network_for_Cognitive_Decisions. Accessed 30 Oct 2022
Leng, G., Prasad, G., McGinnity, T.M.: An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Netw. 17(10), 1477–1493 (2004). https://doi.org/10.1016/j.neunet.2004.07.009
Nofer, M., Hinz, O.: Using twitter to predict the stock market. Bus. Inf. Syst. Eng. 57(4), 229–242 (2015). https://doi.org/10.1007/s12599-015-0390-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Cui, Y., Jiang, Y., Gu, H. (2022). Novel Sentiment Analysis from Twitter for Stock Change Prediction. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2022. Communications in Computer and Information Science, vol 1745. Springer, Singapore. https://doi.org/10.1007/978-981-19-8991-9_13
Download citation
DOI: https://doi.org/10.1007/978-981-19-8991-9_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8990-2
Online ISBN: 978-981-19-8991-9
eBook Packages: Computer ScienceComputer Science (R0)