Skip to main content

Flux Modelling of Membrane Bioreactor Process Plant Using Optimized-BPNN

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1713))

Included in the following conference series:

  • 846 Accesses

Abstract

Membrane bioreactor (MBR) is one of the most popular sewage treatment technologies. However, membrane fouling, a complicated process, has a negative effect on the membrane service life and effluent quality. A model with high accuracy, stability, generalization ability was needed to overcome this problem. Artificial neural network (ANN) stands out from numerous machine learning modeling methods with self-learning and sufficient capacity to capture the nonlinear complexity processes. In this paper, back-propagation neural network models (BPNN) with different hyper parameters were proposed using back-propagation algorithm. To improve the efficiency of learning process, batch module was introduced into training dataset. 4000 samples experimental data have been collected with the MBR pilot plant, 60% was used for training, 20% was used for validation, the rest for testing. With the simulation result, in theory a three-layer ANN have the ability to fit any mapping problem was proved with an average of 98% for R2 performance. However, with the comparison of models with different hyper parameters, two hidden layer models have a better performance with appropriate neurons, within an acceptable computational load. Over-fitting phenomenon occurs when the number of nodes is too large, resulting in larger MAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, Y., et al.: Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Biores. Technol. 250, 398–405 (2018)

    Article  Google Scholar 

  2. Krzeminski, P., et al.: Membrane bioreactors – a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. V527, 207–227 (2017)

    Article  Google Scholar 

  3. Wu, M., et al.: Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights. Water Res. 181, 115932 (2020)

    Article  Google Scholar 

  4. Du, X., et al.: A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes 10, 10020024 (2020)

    Article  Google Scholar 

  5. Abdul Wahab, N., et al.: Permeate flux control in SMBR system by using neural network internal model control. Processes 8, 1672 (2020)

    Google Scholar 

  6. Zaghloul, M.S., et al.: Performance prediction of an aerobic granular SBR using modular multilayer artificial neural networks. Sci. Total Environ. 645, 449–459 (2018)

    Article  Google Scholar 

  7. Zaghloul, M.S., et al.: Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors. J. Environ. Chem. Eng. 8, 103742 (2020)

    Article  Google Scholar 

  8. Zhao, B.: Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm. Appl. Soft Comput. J. 91, 106211 (2020)

    Article  Google Scholar 

  9. Yusuf, Z., Wahab, N.A., et al.: Soft computing techniques in modelling of membrane filtration system: a review. Desalin. Water Treat. 161, 144–155 (2019)

    Article  Google Scholar 

  10. Ren, N., Chen, Z., Wang, X., Hu, D., Wang, A.: Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment. Int. Biodeterior. Biodegrad. 56, 216–223 (2005)

    Article  Google Scholar 

  11. Wei, A.L., Zeng, G.M., Huang, G.H., Liang, J., Li, X.D.: Modeling of a permeate flux of cross-flow membrane filtration of colloidal suspensions: a wavelet network approach. Int. J. Environ. Sci. Tchnol. 6, 395–406 (2009)

    Article  Google Scholar 

  12. Lee, Y.G., et al.: Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant. Desalination 247, 180–189 (2009)

    Article  Google Scholar 

  13. Yusuf, Z., Wahab, N.A., Sahlan, S.: Modeling of filtration process using PSO-neural network. J. Telecommun. Electron. Comput. Eng. 9, 15–19 (2017)

    Google Scholar 

  14. Schmidt-Hieber, J.: The Kolmogorov-Arnold representation theorem revisited. Neural Netw. 137, 119–126 (2021)

    Article  Google Scholar 

  15. Zhang, Z.: Research on Modeling and Predictive Control of Heavy Duty Gas Turbine Based on Neural Network. D Beijing China, pp. 10–15 (2020)

    Google Scholar 

  16. Xu, H., Jagannathan, S.: Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming. IEEE Trans. Neural Netw. Lean. Syst. 24(5), 471–484 (2013)

    Article  Google Scholar 

  17. Barello, M., Manca, D., Patel, R., Mujtaba, I.M.: Neural network based correlation for estimating water permeability constant in RO desalination process under fouling. Desalination 345, 101–111 (2014)

    Article  Google Scholar 

  18. More, J.J.: The Levenberg-Marquardt Algorithm: Implementation and Theory (1978). https://doi.org/10.1007/bfb0067700

  19. Madaeni, S.S., Shiri, M., Kurdian, A.R.: Modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network. Chem. Eng. Commun. 202, 6–14 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to acknowledge the Ministry of Higher Education Malaysia (MOHE) and Universiti Technologi Malaysia (UTM) for the financial support under the University Grant under project number Q.J130000.3851.19J19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Sham Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, L., Ismail, F.S., Wahab, N.A. (2022). Flux Modelling of Membrane Bioreactor Process Plant Using Optimized-BPNN. In: Fan, W., Zhang, L., Li, N., Song, X. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2022. Communications in Computer and Information Science, vol 1713. Springer, Singapore. https://doi.org/10.1007/978-981-19-9195-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9195-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9194-3

  • Online ISBN: 978-981-19-9195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics