Skip to main content

Industrial Metaverse: Connotation, Features, Technologies, Applications and Challenges

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1712))

Included in the following conference series:

Abstract

Metaverse expands the cyberspace with more emphasis on human-in-loop interaction, value definition of digital assets and real-virtual reflection, which facilitates the organic fusion of man, machine and material in both physical industry and digital factory. The concept of Industrial Metaverse is proposed as a new man-in-loop digital twin system of the real industrial economy which is capable of man-machine natural interaction, industrial process simulation and industrial value transaction. With the comparison with Metaverse and Digital Twin, the key features of Industrial Metaverse are summarized, which are man-in-loop, real-virtual interaction, process asserts and social network. Key technologies of Industrial Metaverse are surveyed including natural interaction, industrial process simulation, industrial value transaction and large-scale information processing and transmission technologies, etc. Potential application modes of Industrial Metaverse are given at the end as well as the challenges from technology, industry and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephenson, N.: Snow Crash. Bantam (1992)

    Google Scholar 

  2. Wikipedia - Metaverse. https://en.wikipedia.org/wiki/Metaverse

  3. Peking University scholars released the START map of metaverse characteristics and attributes [EB/.OL], 19 November 2021. https://www.sohu.com/a/502061675_162758. Accessed 25 Apr 2022

  4. Li, B.H., Chai, X.D., Zhang, L.: Cloud Manufacturing: a new service-oriented networked manufacturing model. CIMS 6(01), 7+16 (2010). https://doi.org/10.13196/j.cims.2010.01.3.libh.004

    Article  Google Scholar 

  5. Zhang, L.: Cold thinking about digital twin and the modeling and simulation technology behind it. J. Syst. Simul. 32(4), 744 (2020)

    Google Scholar 

  6. Olanrewaju, O.I., Sandanayake, M., Babarinde, S.A.: Voice assisted key-in building quantities estimation system. J. Eng. Proj. Prod. Manag. 10(2), 114–122 (2020)

    Google Scholar 

  7. Sheldon, A., Dobbs, T., Fabbri, A., et al.: Putting the AR in (AR)chitecture-Integrating voice recognition and gesture control for Augmented Reality interaction to enhance design practice (2019)

    Google Scholar 

  8. Pagano, S., Russo, R., Savino, S.: A vision guided robotic system for flexible gluing process in the footwear industry. Robot. Comput. Integr. Manuf. 65, 101965 (2020)

    Google Scholar 

  9. Yu, Y., Li, H., Yang, X., et al.: An automatic and non-invasive physical fatigue assessment method for construction workers. Autom. Constr. 103, 1–12 (2019)

    Google Scholar 

  10. Zhou, M., Liu, Z.Y., Lu, G.P., et al.: Application of OCR-based automatic identification of digital instruments in industrial field. Instrument User (2021)

    Google Scholar 

  11. Javaid, M., Haleem, A., Singh, R.P., et al.: Significance of sensors for Industry 4.0: roles, capabilities, and applications. Sens. Int. 2, 100110 (2021)

    Google Scholar 

  12. Chen, B., Wang, J., Chen, S.: Modeling of pulsed GTAW based on multi-sensor fusion. Sens. Rev. 29, 223–232 (2009)

    Google Scholar 

  13. Wang, W., Zhao, K., Zhang, P., et al.: Application of three self-developed ECT sensors for monitoring the moisture content in sand and mortar. Constr. Build. Mater. 267, 121008 (2021)

    Google Scholar 

  14. Lee, J., Jung, Y., Sung, S.H., et al.: High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 9(2), 1159–1167 (2021)

    Google Scholar 

  15. Lin, C.C., Deng, D.J., Chen, Z.Y., et al.: Key design of driving Industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. IEEE Commun. Mag. 54(10), 46–52 (2016)

    Google Scholar 

  16. Vidal, J.J.: Toward direct brain-computer communication (1973)

    Google Scholar 

  17. Kwak, N.S., Lee, S.W.: Error correction regression framework for enhancing the decoding accuracies of ear-EEG brain–computer interfaces. IEEE Trans. Cybern. 50(8), 3654–3667 (2019)

    Google Scholar 

  18. Wei, C.S., Wang, Y.T., Lin, C.T., et al.: Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 400–406 (2018)

    Google Scholar 

  19. Wang, L., Huang, W., Yang, Z., et al.: A method from offline analysis to online training for the brain-computer interface based on motor imagery and speech imagery. Biomed. Signal Process. Control 62, 102100 (2020)

    Google Scholar 

  20. Cattan, G.: The use of brain–computer interfaces in games is not ready for the general public. Front. Comput. Sci. 3, 628773 (2021)

    Google Scholar 

  21. Andreev, A., Barachant, A., Lotte, F., et al.: Recreational applications of OpenViBE: brain invaders and use-the-force (2016)

    Google Scholar 

  22. Wang, Z., Yu, Y., Xu, M., et al.: Towards a hybrid BCI gaming paradigm based on motor imagery and SSVEP. Int. J. Hum. Comput. Interact. 35(3), 197–205 (2019)

    Google Scholar 

  23. Cruz, I., Moreira, C., Poel, M., Ferreira, H., Nijholt, A.: Kessel Run - a cooperative multiplayer SSVEP BCI game. In: Chisik, Y., Holopainen, J., Khaled, R., Luis Silva, J., Alexandra Silva, P. (eds.) INTETAIN 2017. LNICSSITE, vol. 215, pp. 77–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73062-2_6

    Chapter  Google Scholar 

  24. Xu, M.P., He, F., Jung, T.P., Gu, X.S., Ming, D.: Current challenges for the practical application of electroencephalography-based brain-computer interfaces. Engineering 7(12), 1710–1712 (2021)

    Google Scholar 

  25. Burghardt, A., Szybicki, D., Gierlak, P., et al.: Programming of industrial robots using virtual reality and digital twins. Appl. Sci. 10(2), 486 (2020)

    Google Scholar 

  26. Wolfartsberger, J.: Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 104, 27–37 (2019)

    Google Scholar 

  27. Yashin, G.A., Trinitatova, D., Agishev, R.T., et al.: AeroVr: virtual reality-based teleoperation with tactile feedback for aerial manipulation. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 767–772. IEEE (2019)

    Google Scholar 

  28. Marino, E., Barbieri, L., Colacino, B., et al.: An augmented reality inspection tool to support workers in Industry 4.0 environments. Comput. Ind. 127, 103412 (2021)

    Google Scholar 

  29. Ariansyah, D., Rosa, F., Colombo, G.: Smart maintenance: a wearable augmented reality application integrated with CMMS to minimize unscheduled downtime. Comput. Aid. Des. Appl. 17(4), 740–751 (2020)

    Google Scholar 

  30. Kokkas, A., Vosniakos, G.-C.: An Augmented Reality approach to factory layout design embedding operation simulation. Int. J. Interact. Des. Manuf. (IJIDeM) 13(3), 1061–1071 (2019). https://doi.org/10.1007/s12008-019-00567-6

    Article  Google Scholar 

  31. Damiani, L., Demartini, M., Guizzi, G., et al.: Augmented and virtual reality applications in industrial systems: a qualitative review towards the Industry 4.0 era. IFAC-PapersOnLine 51(11), 624–630 (2018)

    Google Scholar 

  32. Baroroh, D.K., Chu, C.H., Wang, L.: Systematic literature review on augmented reality in smart manufacturing: collaboration between human and computational intelligence. J. Manuf. Syst. 61, 696–711 (2021)

    Google Scholar 

  33. Petsiuk, A., Pearce, J.M.: Towards smart monitored AM: open source in-situ layer-wise 3D printing image anomaly detection using histograms of oriented gradients and a physics-based rendering engine. Addit. Manuf. 52, 102690 (2022)

    Google Scholar 

  34. Mueller, J.H., Neff, T., Voglreiter, P., et al.: Temporally adaptive shading reuse for real-time rendering and virtual reality. ACM Trans. Graph. (TOG) 40(2), 1–14 (2021)

    Google Scholar 

  35. Liu, C., Wang, L., Li, Z., et al.: Real-time lighting estimation for augmented reality via differentiable screen-space rendering. IEEE Trans. Vis. Comput. Graph. 01, 1 (2022)

    Google Scholar 

  36. Marrinan, T., Papka, M.E.: Real-time omnidirectional stereo rendering: generating 360 surround-view panoramic images for comfortable immersive viewing. IEEE Trans. Vis. Comput. Graph. 27(5), 2587–2596 (2021)

    Google Scholar 

  37. Chu, W., He, X., Zhu, Z.: Research on the semi-physical simulation maintenance training system of one engineering equipment. In: 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019), pp. 34–39. Atlantis Press (2019)

    Google Scholar 

  38. Shen, H., Li, Z., Qi, L., et al.: A method for gear fatigue life prediction considering the internal flow field of the gear pump. Mech. Syst. Signal Process. 99, 921–929 (2018)

    Google Scholar 

  39. Chai, W., Liu, X., Shan, Y., et al.: Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property. Adv. Eng. Softw. 116, 1–8 (2018)

    Google Scholar 

  40. Lin, J.L.: Simulation and optimization method and application of complex electromechanical products based on deep surrogate model. Guangdong University of Technology (2021)

    Google Scholar 

  41. Zhang, S., Wong, T.N.: Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning. J. Intell. Manuf. 29(3), 585–601 (2014). https://doi.org/10.1007/s10845-014-1023-3

    Article  Google Scholar 

  42. Michaux, B., Hannula, J., Rudolph, M., et al.: Study of process water recirculation in a flotation plant by means of process simulation. Miner. Eng. 148, 106181 (2020)

    Google Scholar 

  43. Futáš, P., Pribulová, A., Fedorko, G., et al.: Failure analysis of a railway brake disc with the use of casting process simulation. Eng. Fail. Anal. 95, 226–238 (2019)

    Google Scholar 

  44. Martínez, G.S., Sierla, S.A., Karhela, T.A., et al.: Automatic generation of a high-fidelity dynamic thermal-hydraulic process simulation model from a 3D plant model. IEEE Access 6, 45217–45232 (2018)

    Google Scholar 

  45. Sun, L., Yu, Y., Jin, H., et al.: An optimised steelmaking-continuous casting scheduling simulation system with unity 3D. Int. J. Simul. Process Model. 15(3), 213–224 (2020)

    Google Scholar 

  46. Liao, J., Lin, C.: Optimization and simulation of job-shop supply chain scheduling in manufacturing enterprises based on particle swarm optimization. Int. J. Simul. Model. 18(1), 187–196 (2019)

    Google Scholar 

  47. Viharos, A.B., Németh, I.: Simulation and scheduling of AGV based robotic assembly systems. IFAC-PapersOnLine 51(11), 1415–1420 (2018)

    Google Scholar 

  48. López, J., Zalama, E., Gómez-García-Bermejo, J.: A simulation and control framework for AGV based transport systems. Simul. Model. Pract. Theory 116, 102430 (2022)

    Google Scholar 

  49. Zhao, C.Y., Li, J.L., Ren, J.J., et al.: Ergonomic simulation and evaluation of upright program-controlled exercise bike based on CATIA. Mech. Des. 4, 140–144 (2019)

    Google Scholar 

  50. Zhou, A., Zhang, J.M., Yang, Q., et al.: Simulation analysis of ergonomics of industrial truck cab based on JACK. Mech. Des. 37(1), 26–34 (2020)

    Google Scholar 

  51. Lu, N., Zhu, D.X., Li, F.Y.: Ergonomic design and simulation analysis of intelligent health monitoring integrated machine for the elderly. Mech. Des. 37(10), 128–133 (2020)

    Google Scholar 

  52. Wang, W., Gao, X.S., Mu, Z.G., et al.: Application of ergonomic simulation technology in aircraft component assembly. Aviat. Manuf. Technol. 60(9), 92–96 (2017)

    Google Scholar 

  53. Xie, R., Wang, Z., Yu, F.R., Huang, T., Liu, Y.: A novel identity resolution system design based on Dual-Chord algorithm for industrial Internet of Things. Sci. China Inf. Sci. 64(8), 1–14 (2021). https://doi.org/10.1007/s11432-020-3016-x

    Article  MathSciNet  Google Scholar 

  54. Liu, Y., Chi, C., Zhang, Y., et al.: Identification and resolution for industrial internet: architecture and key technology. IEEE Internet Things J. 9, 16780–16794 (2022)

    Google Scholar 

  55. Wang, Z., Ye, T., Xiong, A.: Research of food traceability technology based on the Internet of Things name service. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 100–106. IEEE (2016)

    Google Scholar 

  56. Wang, H., Sun, Z.: Research on multi decision making security performance of IoT identity resolution server based on AHP. Math. Biosci. Eng. 18(4), 3977–3992 (2021)

    MathSciNet  Google Scholar 

  57. Bamakan, S.M.H., Nezhadsistani, N., Bodaghi, O., et al.: Patents and intellectual property assets as non-fungible tokens; key technologies and challenges. Sci. Rep. 12(1), 1–13 (2022)

    Google Scholar 

  58. Truby, J., Brown, R.D., Dahdal, A., et al.: Blockchain, climate damage, and death: policy interventions to reduce the carbon emissions, mortality, and net-zero implications of non-fungible tokens and Bitcoin. Energy Res. Soc. Sci. 88, 102499 (2022)

    Google Scholar 

  59. Karandikar, N., Chakravorty, A., Rong, C.: Blockchain based transaction system with fungible and non-fungible tokens for a community-based energy infrastructure. Sensors 21(11), 3822 (2021)

    Google Scholar 

  60. Arcenegui, J., Arjona, R., Román, R., et al.: Secure combination of IoT and blockchain by physically binding IoT devices to smart non-fungible tokens using PUFs. Sensors 21(9), 3119 (2021)

    Google Scholar 

  61. Chohan, U.W.: Non-fungible tokens: blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers (2021)

    Google Scholar 

  62. Pinto-Gutiérrez, C., Gaitán, S., Jaramillo, D., et al.: The NFT hype: what draws attention to non-fungible tokens? Mathematics 10(3), 335 (2022)

    Google Scholar 

  63. Abidi, M.H., Alkhalefah, H., Umer, U., et al.: Blockchain-based secure information sharing for supply chain management: optimization assisted data sanitization process. Int. J. Intell. Syst. 36(1), 260–290 (2021)

    Google Scholar 

  64. Shahbazi, Z., Byun, Y.C.: Improving transactional data system based on an edge computing–blockchain–machine learning integrated framework. Processes 9(1), 92 (2021)

    Google Scholar 

  65. Hariharasudan, A., Otola, I., Bilan, Y.: Reactive power optimization and price management in microgrid enabled with blockchain. Energies 13(23), 6179 (2020)

    Google Scholar 

  66. Hasan, M.K., Akhtaruzzaman, M., Kabir, S.R., et al.: Evolution of industry and blockchain era: monitoring price hike and corruption using BIoT for smart government and Industry 4.0. IEEE Trans. Ind. Inform. 18, 9153–9161 (2022)

    Google Scholar 

  67. Chen, Y., Lu, Y., Bulysheva, L., et al.: Applications of blockchain in Industry 4.0: a review. Inf. Syst. Front., 1–15 (2022). https://doi.org/10.1007/s10796-022-10248-7

  68. Fei, C., Jiang, B., Xu, K., et al.: An intelligent load control-based random access scheme for space-based Internet of Things. Sensors 21(4), 1040 (2021)

    Google Scholar 

  69. Fei, C., Zhao, B., Yu, W., et al.: Towards efficient data collection in space-based Internet of Things. Sensors 19(24), 5523 (2019)

    Google Scholar 

  70. Liu, Z., Jiao, J., Wu, S., et al.: Non-orthogonal superimposed pilot grant-free random access scheme in satellite-based IoT. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1407–1412. IEEE (2022)

    Google Scholar 

  71. Jiao, J., Sun, Y., Wu, S., et al.: Network utility maximization resource allocation for NOMA in satellite-based Internet of Things. IEEE Internet Things J. 7(4), 3230–3242 (2020)

    Google Scholar 

  72. Jiao, J., Wu, S., Lu, R., et al.: Massive access in space-based Internet of Things: challenges, opportunities, and future directions. IEEE Wirel. Commun. 28(5), 118–125 (2021)

    Google Scholar 

  73. Rodriguez, I., Mogensen, R.S., Fink, A., et al.: An experimental framework for 5G wireless system integration into Industry 4.0 applications. Energies 14(15), 4444 (2021)

    Google Scholar 

  74. Sasiain, J., Sanz, A., Astorga, J., et al.: Towards flexible integration of 5G and IIoT technologies in Industry 4.0: a practical use case. Appl. Sci. 10(21), 7670 (2020)

    Google Scholar 

  75. Khatib, E.J., Barco, R.: Optimization of 5G networks for smart logistics. Energies 14(6), 1758 (2021)

    Google Scholar 

  76. Priya, B., Malhotra, J.: 5GAuNetS: an autonomous 5G network selection framework for Industry 4.0. Soft. Comput. 24(13), 9507–9523 (2019). https://doi.org/10.1007/s00500-019-04460-y

    Article  Google Scholar 

  77. Li, S., Da Xu, L., Zhao, S.: 5G Internet of Things: a survey. J. Ind. Inf. Integr. 10, 1–9 (2018)

    Google Scholar 

  78. Wang, N., Wang, P., Alipour-Fanid, A., et al.: Physical-layer security of 5G wireless networks for IoT: challenges and opportunities. IEEE Internet Things J. 6(5), 8169–8181 (2019)

    Google Scholar 

  79. Chettri, L., Bera, R.: A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 7(1), 16–32 (2019)

    Google Scholar 

  80. Xu, L., Collier, R., O’Hare, G.M.P.: A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet Things J. 4(5), 1229–1249 (2017)

    Google Scholar 

  81. Mahmood, N.H., Alves, H., López, O.A., et al.: Six key features of machine type communication in 6G. In: 2020 2nd 6G Wireless Summit (6G SUMMIT), pp. 1–5. IEEE (2020)

    Google Scholar 

  82. Rappaport, T.S., Xing, Y., Kanhere, O., et al.: Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Google Scholar 

  83. Letaief, K.B., Chen, W., Shi, Y., et al.: The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57(8), 84–90 (2019)

    Google Scholar 

  84. Basar, E.: Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G. IEEE Trans. Commun. 68(5), 3187–3196 (2020)

    Google Scholar 

  85. Dang, S., Amin, O., Shihada, B., et al.: What should 6G be? Nat. Electron. 3(1), 20–29 (2020)

    Google Scholar 

  86. Tataria, H., Shafi, M., Molisch, A.F., et al.: 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc. IEEE 109(7), 1166–1199 (2021)

    Google Scholar 

  87. Jing, T., Tian, X., Hu, H., et al.: Cloud-Edge collaboration framework with deep learning-based for remaining useful life prediction of machinery. IEEE Trans. Ind. Inform. (2021)

    Google Scholar 

  88. Yang, C., Wang, Y., Lan, S., et al.: Cloud-edge-device collaboration mechanisms of deep learning models for smart robots in mass personalization. Robot. Comput. Integr. Manuf. 77, 102351 (2022)

    Google Scholar 

  89. Jian, C., Ping, J., Zhang, M.: A cloud edge-based two-level hybrid scheduling learning model in cloud manufacturing. Int. J. Prod. Res. 59(16), 4836–4850 (2021)

    Google Scholar 

  90. Laili, Y., Guo, F., Ren, L., et al.: Parallel scheduling of large-scale tasks for industrial cloud-edge collaboration. IEEE Internet Things J. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z. et al. (2022). Industrial Metaverse: Connotation, Features, Technologies, Applications and Challenges. In: Fan, W., Zhang, L., Li, N., Song, X. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2022. Communications in Computer and Information Science, vol 1712. Springer, Singapore. https://doi.org/10.1007/978-981-19-9198-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9198-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9197-4

  • Online ISBN: 978-981-19-9198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics