Skip to main content

LED: Learnable Encryption with Deniability

  • Conference paper
  • First Online:
New Trends in Computer Technologies and Applications (ICS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1723))

Included in the following conference series:

  • 712 Accesses

Abstract

User privacy is an important issue in the cloud machine learning service. In this paper, we raise a new threat about the online machine learning service, which comes from outside superior authority. The authority may ask the user and the cloud to disclose secrets and the authority can monitor the user behavior. We propose a protection approach called learnable encryption with deniability (LED), which can convince the outsider of the fake data and can protect the user privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our implementation is based on Learnable Image Encryption work without deniability feature.

References

  1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450 (2000). https://doi.org/10.1145/335191.335438

    Article  Google Scholar 

  2. Ahamed, S.I., Ravi, V.: Privacy-preserving chaotic extreme learning machine with fully homomorphic encryption (2022). https://doi.org/10.48550/ARXIV.2208.02587. https://arxiv.org/abs/2208.02587

  3. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_4

    Chapter  Google Scholar 

  4. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229

    Chapter  Google Scholar 

  5. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. Cryptology ePrint Archive, Report 2017/035 (2017). https://eprint.iacr.org/2017/035

  6. Chen, G., Chen, Q., Zhu, X., Chen, Y.: Encrypted image feature extraction by privacy-preserving MFS. In: 2018 7th International Conference on Digital Home (ICDH), pp. 42–45, November 2018. https://doi.org/10.1109/ICDH.2018.00016

  7. Gasti, P., Ateniese, G., Blanton, M.: Deniable cloud storage: sharing files via public-key deniability. In: Proceedings of the 9th Annual ACM Workshop on Privacy in the Electronic Society, pp. 31–42 (2010)

    Google Scholar 

  8. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

    Google Scholar 

  9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987). https://doi.org/10.1145/28395.28420

  10. Kiya, H.: Compressible and learnable encryption for untrusted cloud environments. CoRR abs/1811.10254 (2018). http://arxiv.org/abs/1811.10254

  11. Lee, J., et al.: Privacy-preserving machine learning with fully homomorphic encryption for deep neural network. CoRR abs/2106.07229 (2021). https://arxiv.org/abs/2106.07229

  12. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 619–631. ACM, New York (2017). https://doi.org/10.1145/3133956.3134056

  13. Madono, K., Tanaka, M., Onishi, M., Ogawa, T.: Block-wise scrambled image recognition using adaptation network. CoRR abs/2001.07761 (2020). https://arxiv.org/abs/2001.07761

  14. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38, May 2017. https://doi.org/10.1109/SP.2017.12

  15. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  16. Podschwadt, R., Takabi, D., Hu, P.: SoK: privacy-preserving deep learning with homomorphic encryption. CoRR abs/2112.12855 (2021). https://arxiv.org/abs/2112.12855

  17. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure deep learning. In: Proceedings of the 55th Annual Design Automation Conference, DAC 2018, pp. 2:1–2:6. ACM, New York (2018). https://doi.org/10.1145/3195970.3196023

  18. Tanaka, M.: Learnable image encryption. CoRR abs/1804.00490 (2018). http://arxiv.org/abs/1804.00490

  19. Wikipedia contributors: Internet censorship in China—Wikipedia, the free encyclopedia (2022). https://en.wikipedia.org/w/index.php?title=Internet_censorship_in_China &oldid=1110094504. Accessed 15 Sept 2022

  20. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167, October 1986. https://doi.org/10.1109/SFCS.1986.25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Wen Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, ZW., Liu, TH., Chi, PW. (2022). LED: Learnable Encryption with Deniability. In: Hsieh, SY., Hung, LJ., Klasing, R., Lee, CW., Peng, SL. (eds) New Trends in Computer Technologies and Applications. ICS 2022. Communications in Computer and Information Science, vol 1723. Springer, Singapore. https://doi.org/10.1007/978-981-19-9582-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9582-8_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9581-1

  • Online ISBN: 978-981-19-9582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics